
A Modular Architecture for Client-Based Analysis
of Biological Microscopy Images

by

Sheldon Y. Chan

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

At the Massachusetts Institute of Technology

May 26, 2006

C 2006 Massachusetts Institute of Technology. All rights reserved.

Author
Department of Elect calgineering and Computer Science

May 12, 2006

Certified by.C ertified by....................................
""""""//"i ~ Peter K. Sorger

77/ Professor
. Department of Biology

/ Thesi Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

MASSACHUSETTS INSTIME
OF TECHNOLOGY

AUG 1 4 2006
I I

LIBRARIES

ARCHIVES

2

A Modular Architecture for Client-Based Analysis
of Biological Microscopy Images

by

Sheldon Y. Chan

Submitted to the
Department of Electrical Engineering and Computer Science

May 12, 2006

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The modular client architecture created for the Open Microscopy Environment (OME)

enables developers to easily integrate client-based analyses into the experimental

workflow typical of biological imaging. This architecture utilizes a componentized,

pluggable framework to provide ease of integration and scalability while lowering the

total cost of ownership for the OME client. The application programming interface (API)

for connecting external analyses is designed within this modular architecture taking

advantage of declarative plug-in extensions to automatically recognize new analyses.

Ease of integration with the OME client allows users to analyze multi-dimensional

images with a repertoire of analyses and persist derived data into OME.

Thesis supervisor:

Peter K. Sorger
Professor
Department of Biology

3

4

Acknowledgements

The Open Microscopy Environment is a joint effort between the Sorger Lab in MIT's

Department of Biology, the Swedlow Lab in the Wellcome Trust Biocentre at the

University of Dundee, Scotland, the Image Informatics and Computational Biology Unit

at the National Institute of Health in Baltimore, and the Laboratory for Optical and

Computational Instrumentation at the University of Wisconsin-Madison.

I could not have complete this thesis without the technical help and advice of Peter

Sorger, Jeremy Muhlich, Tony Scelfo, Erik Brauner, Jason Swedlow, Chris Allan, Jean-

Marie Burel, Joshua Moore, Josiah Johnston, Harry Hochheiser, Anne Carpenter and

Michael Lamprecht.

I would also like to thank Melissa Chan, Yvonne Chan, David Jackson, Bill Fienup,

Johnny Boy, Brock Arnold, Jon Salz, Darcy Kelly, and Laura Snow for putting up with

me through this project.

This project is dedicated to my parents, Cheuk and Wing Chan.

The work described in this thesis was supported by MIT CDP grant #P-50-GM68762 and

ICBP grant #5-U54-CA112967-02.

5

6

Table of Contents

1 Introduction .. 13
1.1 Open Microscopy Environment 14

1.1.1 OME Data Model .. 17
1.1.2 Server-Side Analysis Modules 17

1.2 User requirements .. 18
1.3 Project evolution 18
1.4 Software Dependencies .. 19

1.4.1 E clipse .. 19
1.4.2 CellProfiler .. 20

1.5 Workflow 21
2 Componentization .. 24

2.1 Current Architectural Overview .. 25
2.2 Goals & Constraints .. 26
2.4 System Componentization 27

2.4.1 Physical Repackaging ... 28
2.4.2 Modified Initialization Sequence .. 30
2.4.3 Component Registration 31
2.4.4 Resource Location 32
2.4.5 AWT Interoperability 33

2.5 Summary 33
3 External Analysis 36

3.1 Overview 36
3.2 Design Considerations .. 38
3.3 External Analysis .. 40

3.3.1 Shoola Component Awareness 40
3.3.2 Message Event Handling .. 42
3.3.3 Shoola Abstraction ... 42
3.3.4 Local Image Management .. 43
3.3.5 Analysis Plug-in Extension Points .. 44
3.3.6 Managing Third-Party Analyses 46
3.3.7 Executing Analyses .. 46
3.3.8 Threading Model & Monitoring Progress 47

3.4 Storing Annotation Data 48

7

3.4.1 Design Considerations .. 48
3.4.2 Rem ote Data Storage .. 51
3.4.3 Local Data M anagem ent .. 53

3.5 CellProfiler .. 55
3.6 U ser Interface .. 57

3.6.1 Model, Listeners, and AnalysisBrowser Classes .. 58
3.6.2 Analysis Selection58
3.6.3 Settings M odification .. 60
3.6.4 M onitoring Progress .. 61
3.6.5 Viewing History & Im porting Data ... 63

4 D ata V isualization & M anipulation ... 66
4.1 Data Visualization ... 66
4.2 Tim e-Series Analysis and Cell Tracking .. 68

5 Conclusion ... 71
5.1 W orkflow ... 71
5.2 Future Work .. 73

Appendix A: Source Code & Documentation .. 75

8

List of Figures

FIGURE 1. The three-tiered software architecture for the Open Microscopy Environment
(OME) begins with the collection of images and experimental meta-data. This image
and meta-data is then stored remotely on a Perl server that is accessible via a Java-
based software client .. 16

FIGURE 2. This software workflow summarizes some of the functionality that my thesis
project worked to provide while simultaneously satisfying all software requirements.
This includes being able to easily retrieve images, run third-party analyses, store the
data locally or remotely, and render or analyze analysis data 22

FIGURE 3. The Java-based OME client (Shoola) was originally architected as a set of
loose Java packages that were roughly organized into logical components 24

FIGURE 4. Components are shown here logically clustered into functional groups and
loosely layered according to component inter-dependencies 28

FIGURE 5. The inter-dependencies of individual components are shown in higher detail in
this plug-in dependency diagram. The third-party and core dependencies are at the
bottom with increasing business logic for Shoola layered on top 30

FIGURE 6. Individual components, or "agents," are declared in the container.xml file.
This example shows the Viewer component being identified to Shoola, the main
Java class implementation for the component, and an XML file containing optional
parameters for the Viewer agent ... 31

FIGURE 7. Resource location within the Eclipse environment requires overcoming
boundary conditions imposed when components are loaded in separate classloaders.
This diagram illustrates the pathways traversed when a utility class in the core
Shoola component is called by the DataManager to convert images into icons. The
IconManager needs to locate the resources within the DataManager's classloader..32

FIGURE 8. The external analysis component's UML class diagram shows the
relationships between classes for the logic to recognize new analyses, store data, and
render a user interface. This class diagram also includes the relationship to the
CellProfiler external analysis .. 37

FIGURE 9. This is an isolated class diagram of the org.openmicroscopy.shoola. analysis
plug-in, that provides image retrieval, management of third-party analyses, and
historical logging of previous analyses run on a client .. 40

FIGURE 10. This class inheritance diagram for the "agent" class in the analysis plug-in
shows the simplicity of implementing a new Shoola component 41

9

FIGURE 11. The ImageManager serves as the actual implementation class that arbitrates
between requests made by analyses through the AnalysisManager API and the OME
server. Retrieved images are stored in a local image repository on the client,
allowing for analyses to subsequently run on the saved images 44

Figure 12. XML for the CellProfiler analysis plug-in's extension to the Analysis plug-
in's extension-point. The Analysis plug-in has previously defined a set of fields that
it requires and this CellProfiler plug-in simply provides the requested information.45

FIGURE 13. Three scenarios for data storage were considered. In (A) analysis data would
be transient from one run to another. (B) Every piece of analysis data is stored on
the remote server. (C) Hybrid storage structure would store a copy of everything
locally, but allow selective data importing to the OME server 49

FIGURE 14. This XML semantic type definition defines a CellArea to the server to be a
feature that contains a tag and floating point value .. 51

FIGURE 15. This shows the XML definition for the CellProfiler external analysis module
that establishes proper semantic data input and output. This definition on the server
allows for future analysis data to be properly attributed to this module on the OME
server .. 52

FIGURE 16. This is sample spreadsheet data suitable for the spreadsheet importer. There
are five CellArea data points for the image with an ID of 5. The Tag column
references each distinct cell object and the actual cell area can be found in the last
column .. 53

FIGURE 17. The local Datastore class diagram expresses the relationships for classes that
are predominantly used to parse and retrieve data saved from analyses 54

FIGURE 18. The CellProfiler plug-in and its simple class interactions with the Matlab
plug-in are shown in this figure .. 55

FIGURE 19. This class diagram for the user interface shows the relationships between
classes. The AnalysisBrowserModel is the model, panels are views, and listeners act
as controllers as per the Model-View-Controller (MVC) paradigm 57

FIGURE 20. A screenshot of the analysis selection screen shows the meta-data for the
selected image or data set. Installed and available analyses are listed along with
potential list of sub-analyses in a tree. Descriptions of analyses are provided by
third-party plug-ins .. 59

FIGURE 21. A screenshot of the analysis settings screen shows available channels of the
current selection. Drop-downs enable a user to match channels with analysis inputs.
.. 61

FIGURE 22. A screenshot of the status screen shows comprehensive progress information
and a meter for a measure of completion 62

FIGURE 23. The history screen shows a list of historical analyses performed by this client
along with relevant time-stamp, analysis, input, and a path to output data 63

FIGURE 24. The LoViewer is a data visualization tool built to extract and screen OME
data for interesting trends and relationships. This screenshot demonstrates its
visualization capabilities on data that was saved by a CellProfiler external analysis.
'''-''''''. -..... -....... -.................... 6 7

FIGURE 25. This figure shows a time-series graph tracking cell division in a movie. Each
individual circle indicates the frame and the pixel location of the cell. The solidity of
the lines indicate the probability of the connection .. 69

10

FIGURE 26. This figure revisits the software workflow summarizing some of the
functionality that was implemented by my thesis project. Pathway 1 indicates image
download from the OME server, 2 shows analysis results from an external analysis,
3 and 4, respectively, show remote and local data storage of analysis data. Pathway
5 shows LoViewer visualization of local or remote data stored, and 6 shows data
manipulation using tracking algorithms 72

11

12

CHAPTER 1

Introduction

Technology for quantitative image analysis has made significant strides over the past

decade; however, software-based information management and total workflow

integration has lagged significantly behind. This has left biologists with the ability to

perform accurate measurements on microscope images while forcing them to continue to

keep their data in spreadsheets or scribbled inside notebooks. This ad-hoc management of

data disassociates it from the original images, makes it difficult to search, and magnifies

the task of finding data relevant to the research being done. Software to manage this

image workflow, perform advanced image analysis, and handle the results in a consistent

manner, has fallen behind the pace of software for extracting values from individual

images.

The typical biological workflow involves preparing a sample, collecting images,

performing image analysis, and recording the data from the analysis. Each of these

respective tasks requires keeping track of experimental metadata, infonnrmation about the

microscope optics, information about the analysis algorithms, and the image analysis

data. This biological workflow requires a software architecture that supports advanced

image analysis tools and linking images, meta-data, and analysis results. Such an

architecture also needs to provide a way to access and view that data in a more effective

manner than by current ad-hoc methods. In this way, a biologist could store microscopy

images and utilize third-party image analysis software while maintaining the relationship

between data and images. Additionally, this analysis data would be easily accessible and

13

visualizable. With such a system, a microscopist would not have to manually link images

with image analysis data, and high content screening would be simplified.

My thesis has been to develop an architecture that will support the described workflow

and implement it as software components. This architecture is embedded within the Open

Microscopy Environment (OME) client to provide a complete solution to managing data,

analysis tools, and analysis data. It allows a biologist to retrieve images from a central

repository, run analysis tools on those images, and then store the results back into the

OME data repository. This data is easily accessible and can either be manipulated using

data-mining algorithms or visualized to provide a quick means to screen analysis data.

This document provides the design and implementation of this modular external analysis

architecture for image analysis. Chapter two provides an in depth look at the task of

componentizing the existing OME architecture. Chapter three presents a complete look at

designing and implementing support for external analysis, along with an actual sample

analysis application. Chapter four looks at some of the real applications of this

architecture. Finally, chapter five reviews how the architecture described by this thesis

supports the workflow described earlier and considers some future areas of development.

1.1 Open Microscopy Environment

The Open Microscopy Environment' (OME) is an open-source software project that was

started at MIT to aid in the quantitative analysis of biological images through a database-

driven system. Currently, this project is a joint effort between groups at the

Massachusetts Institute of Technology, the Wellcome Trust Centre at the University of

Dundee, the National Institute of Health (NIH) in Baltimore, and the University of

Wisconsin at Madison. The current implementation of OME is being developed by this

international consortium to solve issues of information loss associated with manual image

management and analysis, and to provide an effective workflow for biologists. However,

there are significant challenges when dealing with' the rapidly developing areas of

bioinformatics and microscopy. Idiosyncratic requirements driven by continually

Open Microscopy Environment. http://www.openmicroscopvy.org.uk.

14

evolving biological semantics and experimental details are demanding increased

flexibility fiom bioinformatics software. While the number of file formats and data

ontologies for image analysis applications continue to expand, very little effort has been

vested in integrating these applications.

The primary focus of OME has been to develop software and protocols to store image

data in a common ontology while preserving the meta-data specific to an experiment,

equipment, or software used to process the images2. Meta-data includes information such

as magnification of the optics, the set of filters employed, and even the model of the

microscope where the images were collected. The common set of semantics that is used

by OME have been derived from existing ontologies including the Medical Subject

Headings (MeSH), the Microarray Gene Expression Data Society (MGED), and the

Minimal Information About a Microarray Experiment (MIAME) effort3. When images

are collected using modem microscopes and stored in OME, meta-data remains

associated with the images and is not lost to a researcher's notes. A secondary focus of

OME has been to leverage these OME data representation semantics in its server-side

image analysis engine. The server allows analysis modules to communicate with each

other in a data-centric manner. The development of a universal language for storing

multi-dimensional microscopy images and associated meta-data l, provides a common

way to read and write data regardless of which analytic module is used. As a result,

analytic modules can be combined into chains to perform automated multi-parametric

analysis of a series of images.

The OME system is implemented as a three-tiered architecture (FIGURE 1) with a

remotely networked Perl server and a local Java client (Shoola). The server is restricted

to running on Unix- or BSD-based operating systems, whereas the client is supported on

most Java-friendly systems. The server is responsible for all image and data warehousing

2 I. G. Goldberg, C. Allan, J. Burel, D. Creager, A. Falconi, H. Hochheiser, J. Johnston, J. Mellen, P. K.
Sorger and J. R. Swedlow, "The Open Microscopy Environment (OME) Data Model and XML file: open
tools for informatics and quantitative analysis in biological imaging," Genome Biology, vol. 6, no. 5, pp.
R47.1-R47.13, 2005.
3 J. R. Swedlow, I. Goldberg, E. Brauner, P. K. Sorger, "Informatics and Quantitative Analysis in
Biological Imaging," Science, Apr., p. 100-102, 2003.

15

on the OME system. In particular, images imported from the microscope are stored into

the image server (OMEIS) and analysis or associative data is stored in the data server

(OMEDS). The server also provides functionality to run Matlab analyses on imported

images. The Java client is primarily limited to viewing images and has some ability to

annotate images with additional information.

FIGURE 1. The three-tiered software architecture for the Open Microscopy
Environment (OME) begins with the collection of images and experimental meta-
data. This image and meta-data is then stored remotely on a Perl server that is
accessible via a Java-based software client.

Within this tiered architecture, the Open Microscopy Environment's built-in image

analysis engine has the ability to run a series of server-side quantitative analyses on large

sets of images and store analysis results within the common ontology; however, the

current implementation of OME can only leverage analysis applications and image tools

designed to process biological images if they are available on the same Unix platforms

that are supported by the server. Unfortunately, integrating analyses with the server is a

complex process that has a steep learning curve, and even were integrating analyses with

the server straightforward it is not an option for software on the Windows operating

systems, which predominates in commercial image analysis applications. This thesis will

cover my alternative to this server-side analysis through the creation of a client-based

analysis architecture that is capable of interacting with third-party analyses. The Shoola

client is not without its own shortcomings, but the client provided the best starting point

16

to fill the gap between OME and existing academic and commercial analysis packages, to

easily perform research specific analyses on a personal workstation.

1.1.1 OME Data Model

The OME data model is based on the principle of strongly typing data to semantic type

objects. These semantic types are simply a name or label given to a piece of information

to describe it on some particular level - global, dataset, image, or feature. Globally

defined types are used describe data that can apply to an entire biological experiment.

Dataset- and image-level types refer to data that can only be applied to dataset and

image-wide characteristics. Feature-level types apply to data regarding objects within an

image. Regardless of the level, these semantic types remain universally and uniquely

interpretable in OME after they are defined. For example, an ImageCellCount is a

semantic type that is used to describe an image level feature of how many cells are

contained within an image. Any data that is typed as an ImageCellCount will always be

interpreted by OME to mean the number of cells contained in the associated image.

This original data model offers the flexibility for supporting new types that may not be

known a priori, but it requires careful and complete declaration of types when you are

ready to store data. This hierarchical model for representing data provides a direct

correspondence with experimental biological data in a human-readable form. These types

are user defined by an XML file that needs to be imported onto the server before they can

be used. The names for new semantic types must be unique from existing server semantic

types to prevent a collision in namespace. This is why it is critical to have a clear

definition of types the first time they are declared to the server.

1.1.2 Server-Side Analysis Modules

As a part of the server-side analysis chains, modules can be defined on the server to have

a particular set of inputs and outputs. For example, the StackStatistics module takes

newly imported files as an input and outputs a set of statistical measurements on the

images. Associating input images with data, and linking to the analysis module used to

define how the data was derived, is crucial in supporting data provenance with the

17

architecture described by this thesis. Data provenance is particularly important with

image analysis since data such as cell location in an image can differ depending on the

exact algorithm applied. Modules can be declared on the server but the actual analysis

does not have to be run as part of the server analysis chains. This will allow us to

associate data from external analysis tools with the original images while maintaining

data provenance.

1.2 User requirements

There are two use cases for performing analysis in the Open Microscopy Environment.

The first is to run analyses within a server-centric system as modeled by the original

server implementation of OME. In this case, a user can run a pre-defined set of analyses

on a large set of images. A second case involves being able to efficiently run a diverse set

of analyses, including research-specific code and client-side commercial applications, on

small sets of images. Both of these scenarios demand that the means to integrate these

different types of analyses are efficient, simple to implement, extensible, and organized

within a data-model.

What follows from these use cases are a set of requirements for my project and OME

system to be able to interact with third-party analyses in an extensible manner. This

implies that the work needed to integrate new analysis modules must be low and that the

system should scale with the addition of more analyses. Secondly, these analyses should

be able to run on more than just the platforms supported by the server. Finally, the data

that is generated by these analyses should be storable in an OME-compatible form, such

that it is viewable and manageable by any OME-aware application.

1.3 Project evolution

This project began in July 2005, following lengthy discussions with Erik Brauner of the

Sorger Lab and Jason Swedlow of the Swedlow Lab. In September of 2005, I visited the

University of Dundee for an OME conference, where the design and feature set for an

external analysis architecture on the client was solidified. Through the end of December

until February, discussions with Zachary Pincus of the Theriot Lab and members of the

18

Sorger Lab reinforced the fundamental need for a client-side analysis architecture.

Finally, a programming interface to the OME server was created in December 2005 and a

full analysis architecture was completed the following March.

1.4 Software Dependencies

Two software packages, Eclipse and CellProfiler, have been used in the course of the

work for this thesis to either support the architecture or to demonstrate how this

architecture will work in a production environment. Eclipse was used to lay the support

for the client architecture and CellProfiler was used to demonstrate how typical image

analysis software fits into this architecture.

1.4.1 Eclipse

Componentized architectures are often applied to software systems to improve the ability

to easily replace failing components, enhance or modify the functionality of a system, or

increase the flexibility for developing new components4 . Existing application frameworks

for creating component-based applications, such as Apache Struts5 are readily available

to help server-based applications achieve a componentized architecture. Similarly, plug-

in based technologies such as Eclipse6 aim to make componentized and extensible, client-

based applications easier to create.

At the heart of Eclipse are two fundamental technologies - OSGi7 bundles and plug-in

extension-points. OSGi is a specification that outlines a set of standards for a component-

oriented computing environment. The Eclipse implementation of an embedded OSGi

microkernel provides a way to control the lifecycle - installation, activation, execution,

and shutdown - of individual bundles, or plug-in components. The second technology

4 R. Seacord and L. Wrage, "Replaceable Components and the Service Provider Interface," [Online
document], 2002 Jul, [cited 2005 Dec 01], Available HTTP:
http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tn009.pdf
5 Apache Struts. http://struts.apache.org/
6 Eclipse. http://www.eclipse.org
7 OSGi. http://OSGi.org/

19

comprises plug-in extension-points8 which form an interlocking layer for components.

This layer is the glue that allows individual plug-in bundles to extend the functionality of

other bundles.

In addition, the Eclipse framework surrounding extension points provides plug-in bundles

with the ability to be dynamically aware of other components. Components can therefore

recognize and utilize other components at will. Another aspect of the Eclipse framework

is that all plug-ins operate under a lazy load paradigm in which plug-in bundles are

activated on an as-needed basis. This principle of lazy loading means that dependencies

are only loaded into memory when they are explicitly referenced or instantiated. The

delay in loading dependencies prevents unreferenced or unused objects from even being

loaded,9 potentially improving memory consumption and startup performance.

The OME Java client when I started this project was comprised of a set of logical

components that were loosely packaged into "agents." This layout formed the basis of a

package-level componentization, but failed to provide the benefits of a fully

componentized architecture and therefore made adding new functionality difficult.

Additionally, the existing architecture had neither a clearly defined process for creating

new agent components, nor a well-defined application program interface (API) to

facilitate component replacement. This thesis project leveraged Eclipse to satisfy some of

the extensibility requirements that were outlined in Section 1.2.

1.4.2 CellProfiler

A large number of academic and commercial image analysis applications exist.

CellProfiler l ' is an open-source image analysis project spearheaded by Anne Carpenter of

the Whitehead Institute that runs a series of Matlab analyses on microscopy images and

generates quantitative data about cell morphologies. Some other common analysis tools

8 A. Bolour, "Notes on the Eclipse Plug-in Architecture," 2003 July, [cited 2005 Dec 01], Available HTTP:
http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin-architecture.html
9 "Lazy Loading of Dynamic Dependencies," [cited 2005 Dec 01], Available HTTP:
http ://docs. sun.com/app/docs/doc/8 17-1984/6mhm7pl1 h?a=view
'o CellProfiler. ttp://groups.csail.mit.edu/vision/cellprofiler/

20

include Definiens Cellenger, Bitplane Imaris12 and Metamorph.13 This particular project

focused on the use of CellProfiler to demonstrate the functionality of the external analysis

architecture developed through the course of this thesis.

My selection of CellProfiler as a reference image analysis engine was based on two

criteria. First, it uses Matlab for mathematical processing and Matlab is one of the most

accessible mathematical tools. Thus, establishing clear support for Matlab was a prudent

course. That would ensure support for any future Matlab-based analyses or custom

Matlab scripts outside of CellProfiler. Secondly, the availability of Anne Carpenter's

development team for support throughout this process made CellProfiler an excellent

candidate for integration.

1.5 Workflow

This thesis project was organized into two main tasks - componentization and

development of an API for external analysis. These tasks collectively addressed the

requirements established for this project in Section 1.2. The task of componentization

helps to provide a modular architecture for client-side external analysis, and promotes

extensibility and scalability. Secondly, the framework for an external analysis

architecture supports integration of third-party analyses into the OME architecture.

Finally, embedding this new architecture into the Java client supports a larger number of

platforms than the existing server-side analysis infrastructure. FIGURE 2 provides a

workflow that served as the fundamental goal for this thesis. Satisfying the requirements

that have been established and supporting the features outlined ensured that such a

workflow is possible.

" Definiens Cellenger. http://www.definiens.com/products/cellenger.phD
12 Bitplane Imaris. http ://www.bitplane.com/products/imaris/imaris product.shtml
'3 Metamorph. http://www.moleculardevices.com/pages/software/metamorph.html

21

7-

.-- i

,....._..-I;:l 4 :..: ;':... .~ 1

FIGURE 2. This software workflow summarizes some of the functionality that my
thesis project worked to provide while simultaneously satisfying all software
requirements. This includes being able to easily retrieve images, run third-party
analyses, store the data locally or remotely, and render or analyze analysis data.

This workflow begins with the Shoola client retrieving the planes for multi-dimensional

images from the server. The client will be able to store these images locally. In turn, with

an external analysis system, these images can be analyzed for relevant feature data by a

third-party tool to produce data that can be stored either on the server or locally by

Shoola. Finally, the data is easy to visualize and manipulate. This thesis will outline the

basic elements to promote this workflow to satisfy our goals, while simultaneously

ensuring all our requirements are satisfied.

22

" -'. ~ .'.1.7 : . ' ., 1W I
4 **_ , -4 4 . 444?

r-l! S$__

;1i;;W 7

7-..... _ _

--- ...---------

Z/Z

.. ..
..

I :.. ·` , : I -:~ :.. ...:.'.~.-. . .: `·-- ···' '- · ~~-- -----·' `... ..I -... .

23

CHAPTER 2
Componentization

This chapter provides a look into the original Shoola client architecture and analyzes how

it could be augmented to support an extensible architecture by architectural re-

componentization using the Eclipse platform. Particular obstacles encountered in the

process of componentization will be discussed, and design decisions will be reviewed for

satisfying the software requirements established in Section 1.2.

FIGURE 3. The Java-based OME client (Shoola) was originally architected as a set
of loose Java packages that were roughly organized into logical components.

A clear separation between individual components adds flexibility to the client and

allows for a means to upgrade or extend the client by easily adding, removing, or

modifying individual bundles. An example of the flexibility of such an architecture is

support for multiple image browsers with differing functionality. The original Shoola

client has a single image browser (hiviewer) that is tightly coupled with the rest of the

system. If we wanted to integrate a custom browser designed specifically to view images

of plates, a device that contains many biological samples that are closely positioned

relative to each other, a developer would have to augment the existing browser with the

24

Shoots Archicture

viewer , executions :: roi

hiviewer chainbuilder ' md

' histoY '1 zoombrowser :j omeis

datamng ' spots 'annotator

_v i Ut _ event I I

env * -utile -,- events -____ __ ... __ ... _ __ v ~~~~~~~~~~~~~~

new features. However, under a pluggable and componentized architecture based on

Eclipse and OSGi, and a well-defined API, such a component could be developed

separately and automatically recognized when it is installed with the Shoola client.

2.1 Current Architectural Overview

The Shoola client is a collection of package-level "agents" that are logically organized

within Java package namespaces. For example, the image viewing components of Shoola

are located in a series of packages under

org.openmi cros copy. shoola. agents .viewer. Similarly, the hierarchal viewer used to
view thumbnails of a collection of images is found under

org.openmicroscopy.shoola.agents.hiviewer. This introduces the first of two

issues that arise from the existing architecture. Despite intending to be component-based,

the Shoola architecture depends on the developer to appropriately organize all of their

components into a logical hierarchy.

This package-level organization is purely by convention since a developer can arbitrarily

opt to use any package for an extension. This loose organization of code within specific

packages may help to identify logical components, but without a stricter enforcement of

component boundaries or a formal interface between components, the responsibility falls

on future developers to determine whether or not code from a particular package is

relevant to their needs.

This leads to the second problem of global access or awareness of a particular class even

if the class was not meant to be accessible outside of its parent component. Java class and

method scoping can address some of these issues, but fails if a component spans multiple

packages, as is the case with Shoola. This is very apparent within the original version of

Shoola, for example, where the Data Manager component contains ten separate packages.

There is no way for the Data Manager to exercise complete access control over its classes

that span these ten packages. FIGURE 3 attempts to show that the current architecture is

composed of a collection of coded components, however, interactions between

components are not clearly delineated. Moreover, the code does not prevent one

25

component like the viewer from seeing or interacting with the internal code for

something like the env package, which manages user and session state with the server.

The first issue of determining where code belongs can be addressed by supplementary

documentation by the developer. However, in consideration of new components, such as

external analysis and data visualization tools, the need for a simple means to work on

individual components rather than the entire client at one time provides a significant

benefit. This is beneficial if new components don't require changes to existing

components and can thus be inserted into a running version of the client. Additionally,

isolation between components can provide better performance by allowing individual

components to be loaded on demand rather than forcing everything to load on startup.

2.2 Goals & Constraints

Based on problems with the original OME client, relative to the requirements set forth in

chapter one, there are three primary goals for system re-componentization. The first and

most important directive for long-term and large-project extensibility is to clearly define

a layered architecture within the Shoola client. This can only be achieved if a directed

acyclic graph of component dependencies can be drawn between all logical components.

This follows that there is also strict dependency enforcement between logical

components. Otherwise, future developers are prone to violate the dependencies,

reverting the client to a brittle non-hierarchical.

The second goal of componentization is to allow the independent development of self-

contained components. This independence implies that the addition of new components

merely requires appending them to the directed acyclic dependency graph, and will not

require a full recompilation unless something within that specific component's

dependency tree has changed. This also allows for individually compiled components to

be dynamically inserted into an installed client that has compatible base components. For

example, in this model, the multiple packages that make up the Data Manager component

are fully self-contained, with their dependencies on other components clearly defined.

26

Finally, the last goal of componentization is to provide an architecture with an extension

mechanism that supports better resource management. A declarative extension

mechanism would allow components to add functionality to each other without requiring

compilation or direct access to internal classes. For example, components could

contribute menu entries to the Data Manager through extension points, and the Data

Manager would not actually need to be aware of these components until runtime. A plug-

in model supporting lazy-loading of an unlimited number of individual plug-in bundles

on-demand provides for a scalable architecture upon which to build a complex client.

These goals, however, have several additional constraints beyond the requirements

already outlined in this thesis that must be imposed in order to produce a successful

product. A client with a reworked architecture demonstrating full componentization must

provide as much functionality as the original client, if not more. This means that all

components need to exhibit the same user-visible behavior as they did previously. The

case for system componentization is weakened if the resulting client does not have

comparable functionality, resource (disk and memory) utilization, and performance

characteristics, since re-componentization does not produce visible changes to an end-

user.

2.4 System Componentization

To re-componentize Shoola, I reconciled the previous package-level componentization

model of the OME Java client with the replaceable component model to determine how

to transform the former into the latter. The package-level componentization appeared to

satisfy our requirements outlined in Section 1.2 at first glance, however, under scrutiny

the dependencies between packages were more tightly coupled than expected. I leveraged

the Eclipse framework to recast "agent" components as Eclipse plug-ins in order to create

a more versatile client. As part of this process, I defined component dependencies and

removed circular dependencies that can restrict extensibility.

27

2.4.1 Physical Repackaging

FIGURE 4. Components are shown here logically clustered into functional groups
and loosely layered according to component inter-dependencies.

The first and most significant step in componentization was the physical re-packaging of

loosely delineated agents into more strictly defined components. The dependencies on

third-party applications such as Apache utilities - HttpClient and Logging - were easily

bundled into their own plug-ins. Most of the package namespaces were preserved by

packaging corresponding packages into plug-ins of the same name. Each plug-in is

usually defined by three main characteristics: one or more Java packages containing

component source code, a single Java class defining the plug-in bundle activator to

manage the plug-in's lifecycle, and a manifest file defining this plug-in's supported inter-

dependencies. An optional XML file is used to define and declare extension points that

allow individual bundles to extend each other. The resulting componentization can be

seen in FIGURE 4, with a full plug-in dependency diagram in FIGURE 5. Each individual

block in FIGURE 4 equivalently represents both a self-contained logical component and

corresponding Eclipse plug-in. Since each plug-in in Eclipse makes a literal declaration

of all of its requisite dependencies and exportable packages, this allows us to easily create

and enforce a directed acyclic dependency graph among components.

28

CeoProfiler Add-on Add-on 2

Afn : £_: I-

Extemal
Extensions

Shooa
Extensions

Coe
Shoola

Application

Core
Dependencies

The layering of components in FIGURE 4 corresponds to the direction of the directed

acyclic dependency graph between components. On the bottom-most tier, core

dependencies are divided into two sections - third party dependencies from Apache and

other software packages not developed by the OME development team, and fairly generic

components that can be used by future Shoola components, but were developed with

OME in mind. Above this layer reside the core components of the Shoola application.

This layer contains the logic for the initialization of additional extensions, and provides

the most primitive functionality for viewing images and managing data sets.

The Shoola Extensions layer provides some added functionality to the basic Shoola

components. This is also the layer in which the external analysis components and various

data visualization tools exist. Finally, at the top of the entire diagram are a series of

extensions upon plug-ins or other add-ons that can build off of underlying layers of

functionality. The crux of this diagram and of this repackaging is that each layer is only

dependent on all of the layers below it to function correctly. Components can be removed

from higher layers without affecting anything below it, and more importantly can be

easily added to higher levels.

29

Shools Application Plug-in Dependencles

Core Plug-in Dependencles

+1 - -

FIGURE 5. The inter-dependencies of individual components are shown in higher
detail in this plug-in dependency diagram. The third-party and core dependencies
are at the bottom with increasing business logic for Shoola layered on top.

An example of this characteristic of understanding dependencies can be seen in FIGURE 5

outlining the Hierarchy Viewer. From this graph, we can see that it depends on the Data

Manager, the Annotator, and presumably most of the components in the core

dependencies. However, if we wanted to make a change to the Chainbuilder, we would

not have to touch the Hierarchy Viewer. In contrast, making changes in the Data Manager

could force a cascading set of changes to all dependent plug-ins.

2.4.2 Modified Initialization Sequence

The restructuring of the original Shoola client to take advantage of the Eclipse plug-in

architecture required specific modifications to the client initialization sequence. The

original bootstrap sequence for Shoola started with a main class that spawned a thread

30

l

_

iI

I

from which the rest of the client would run and then promptly exit. This design,

originally intended to allow for the grouping of threads, caused a failure when trying to

bootstrap within the Eclipse framework. When Shoola's parent thread exits and orphans

its child process, Eclipse assumes Shoola has quit based on the death of the parent thread

that it contains. In turn, this causes Eclipse to exit rather than re-parent the underlying

child. This process of creating a sub-thread on startup was eliminated and Eclipse was

allowed to bootstrap the Shoola client by creating an Eclipse Rich Client application.

This newly created Eclipse application replaces the calls that were used by the original

startup thread, allowing Shoola to be bootstrapped completely by Eclipse and supported

by its dynamic plug-in bundle loading capabilities.

2.4.3 Component Registration

Under the original Shoola client, adding new agents, or components, involved modifying

of a single XML file (container. xml) to append an entry with the following fields: the

name of the agent, the class name of its implementation of the Agent interface, and the

name of an XML file containing preferences and information for resource location. For

example, declaring the viewer as a component in Shoola required the addition of the

XML snippet in FIGURE 6.

<agent>
<name>Viewer</name>
<class>org. openmicroscopy. shoola.agents. viewer. Viever</class>
<config>viewer.xml</config>

</agent>

FIGURE 6. Individual components, or "agents," are declared in the container.xml
file. This example shows the Viewer component being identified to Shoola, the main
Java class implementation for the component, and an XML file containing optional
parameters for the Viewer agent.

This single file contained the information for every component added, and was centrally

located, such that it was globally visible and modifiable.

To accommodate the addition of new components, the former method of registering

"agents" was augmented to take advantage of the Eclipse plug-in extension-point

mechanism. The org. openmicroscopy. shoola plug-in now provides an extension-point

that accepts declarations of agents. The arguments are a name, the agent interface

31

implementation, and an optional XML preferences file, corresponding to the fields of the

original container. xmi. However, these declarations are now all self-contained within

the declaring plug-in. For example, the viewer plug-in can now declare the same

information to the org.openmicroscopy. shoola plug-in, and this information does not

need to be manually appended to a single XML file.

2.4.4 Resource Location

The original design for Shoola made resource location relatively easy since all classes for

the entire application were loaded into a single classloader, classes and resources could

easily find each other. However, the Eclipse plug-in architecture adds a level of

complexity, when it comes to locating specific resources across components, because

each individual plug-in is loaded within its own plug-in classloader. With n distinct

classloaders for each individual component plug-in, and a strict division between plug-in

classloaders, this poses a problem when a class needs to find a resource in a foreign

classloader.

FIGURE 7. Resource location within the Eclipse environment requires overcoming
boundary conditions imposed when components are loaded in separate classloaders.
This diagram illustrates the pathways traversed when a utility class in the core
Shoola component is called by the DataManager to convert images into icons. The
IconManager needs to locate the resources within the DataManager's classloader.

This problem arises in cases such as the IconManager implementation offered by the

org. openmicroscopy. shoola plug-in to load icon files that are located in the respective

components' namespaces. For example, the Data Manager component uses this

IconManager class to retrieve icons that are actually stored within the Data Manager

plug-in. However, FIGURE 7 illustrates the problem with this approach since the actual

code for retrieving the icons is contained in the org. openmicroscopy. shoola plug-in

32

Clasekbodw Cimsoae

lconhlanaW I

WNW V. __1'

classloader and the desired resources are located in the

org.openmicroscopy.shoola.datamng plug-in classloader. This lack of co-location

between resources and consuming code was addressed by passing a reference for the

resource's classloader into the method, so that classes such as the IconManager will

know how to locate the resources.

2.4.5 AWT Interoperability

The Shoola client was written entirely in AWT and Swing to provide menu and image

interfaces. However, the Eclipse platform introduces an alternative user interface engine

called the Standard Widget Toolkit 14 (SWT) that is analogous to Swing / AWT. SWT

takes advantage of native operating system implementations to create more aesthetically

pleasing and professional looking graphical widgets. Since Eclipse provides a simple API

to create sophisticated graphical user interfaces, use of SWT was considered for the

Shoola client. However, both SWT and AWT need to run their event loops run on the

first thread on a Macintosh system and this results in conflicts. Some other options were

considered to see if any SWT code could be used. The first option involved specifying a

Windows environment for the release of the newly repackaged version of Shoola.

However, this fails one of the constraints outlined in Section 2.2, since it would fail to

provide functionality comparable to the original client. Another option would be to port

all Swing and AWT code to SWT. Porting would have required a significant amount of

effort and entailed a high degree of risk by relying totally on SWT, a fairly immature

widget toolkit. Ultimately, the decision was made to retain all original Swing and AWT

code, and make sure that SWT was not exposed to component code.

2.5 Summary

The Eclipse-based approach to componentizing the Shoola client provides a defined

dependency graph between individual components, supporting an extensible and easily

decipherable code base. Resulting components can be managed and developed

independent of any other component. Additionally, the plug-in platform provided by

14 Northover, Steve, "SWT: The Standard Widget Toolkit," 2001 March, [cited 2006 Mar 28], Available
HTTP: http ://www.eclipse.org/articles/Article-SWT-Design- 1/SWT-Design- 1 .html

33

Eclipse provides better resource utilization with on-demand resource loading with

minimal overhead. These characteristics satisfy our goals and requirements of

componentization and provide a flexible basis to build a modular external analysis

architecture.

34

35

CHAPTER 3
External Analysis

The previous chapter provided a comprehensive look into the design and execution of a

plan to componentize the Shoola client to provide a more extensible architecture. This

chapter will make use of this componentized architecture to bring external image analysis

to the Shoola client, with a particular focus on the integration of the CellProfiler image

analysis tool. Several alternative designs will be considered with extensive analysis of the

design that I chose to implement. Particular emphasis is placed on how the mechanism

for adding external analyses interacts with Shoola and supports storage of annotation

data. This chapter will also highlight CellProfiler integration and present a sample

interface to this external analysis architecture.

3.1 Overview

External analysis of OME data requires support for four basic functions: interfacing with

third-party analysis applications, image retrieval, data storage, and data retrieval. Third

party analysis tools need a way to register with the external analysis component and to

retrieve images programmatically from the server. Subsequently, data derived from

analysis must be stored in an OME-compatible form. This data needs to be easily

accessible for further analysis, visualization, or raw viewing. Finally, a clear abstraction

to the OME system will reduce the complexity of communicating with the OME server

and total cost of ownership for building and maintaining analysis modules for the client.

The external analysis component that was implemented handles the dynamic installation

and removal of third-party analysis modules and provides a straightforward interface with

36

the OME system. The CellProfiler image analysis tool is used an example to demonstrate

how a developer would interact with the Shoola system.

FIGURE 8. The external analysis component's UML class diagram shows the
relationships between classes for the logic to recognize new analyses, store data, and
render a user interface. This class diagram also includes the relationship to the
CellProfiler external analysis.

FIGURE 8 provides a global look at all of the pieces of the external analysis module by

means of a class diagram. The classes are roughly divided into the logical parts of the

system. The classes at the top of the diagram comprise the user interface, while the

lower-left and upper-right groups, respectively labeled Analysis and Agent Management,

constitute the core of the external analysis architecture. The three groupings along the

lower right-hand side of the diagram are plug-in components that interact with the

37

external analysis architecture. The Data Management plug-in provides local data storage

(Section 3.4.3), while the Matlab and CellProfiler Analysis (Section 3.5) components

refer to an example third-party analysis.

3.2 Design Considerations

Several alternative designs for an external analysis architecture were considered based on

the requirements outlined in Chapter one but were all found to be lacking. The first

approach involved leaving analysis as it exists on the server as a system of chainable

analysis modules. Commercial analysis applications that normally run on workstations

would be integrated as individual analysis modules on the server. This approach would

allow us to perform high-content screening on large sets of images. However, unless the

analysis programs run on Unix- or BSD-based systems, appropriate licenses are

available, and hardware requirements are met, this approach fails our requirement of

portability of analyses on a number of different platforms. Additionally, integrating all

external analysis on the server would drive the OME project towards a dumb terminal

network 15 that would under-utilize the increasingly powerful workstations that are

already available.

The second approach involved integrating a more complex and extensive server

framework to call external analyses through a distributed system. The OME server would

act as the gateway to Windows-based machines running target software. This might allow

users to take advantage of existing commercial and academic applications, but it would

force users to have intimate knowledge of the server in order to add custom analyses. The

steep learning curve for developing modules on the server and the specific nature of some

analyses made it dubious whether such a distributed system would work.

The last alternative approach to create an analysis framework involved leaving the client

architecture as it existed, but attempting to find hooks in the existing code to integrate

i5 "What is Client / Server?" 1997, [cited 2005 Dec 01], Available HTTP:
http ://msdn.microsoft.com/library/default.asp?url=/librarv/en-
us/dnproasp/html/thebackgroundtoclientserver.asp

38

commercial analysis applications. This would satisfy our use cases, but fail the

requirements for a scalable and extensible architecture. This method would increase the

complexity of the client, add to the operating cost for using OME, and do little to assist

new developers in adding their own analysis mechanisms to OME.

The design that I implemented is a hybrid of both client and server technology to provide

a complete external analysis solution. The flexible, Eclipse-based Shoola client described

in chapter two was used as the basis for development. The external analysis mechanism

was developed as a plug-in component in this client and serves as the direct interface to

third-party analysis tools providing an API to retrieve images, call desired analyses, and

store and retrieve data both locally or remotely. Third-party analyses can contribute

wrapper interfaces via plug-in extensions to easily add functionality to Shoola. This

design satisfies our requirements for extensibility, near-platform independence, and data-

awareness.

39

3.3 External Analysis

FIGURE 9. This is an isolated class diagram of the org.openmicroscopy.shoola.
analysis plug-in, that provides image retrieval, management of third-party analyses,
and historical logging of previous analyses run on a client.

FIGURE 9 shows the class diagram for the org.openmicroscopy.shoola.analysis

plug-in containing the core logic to retrieve images and manage third-party analyses. This

section will go through the different classes in this diagram and describe how they

interact with the Shoola client.

3.3.1 Shoola Component Awareness

One of the first tasks in developing an external analysis framework as a component of the

Shoola client was registering it properly as a component and ensuring that the proper

entries were added to menus in the correct spots. To register this component, an

AnalysisAgent class was created and announced to the Shoola client as a new

component. This AnalysisAgent implements both the Agent and AgentEventListener

40

Anatlysis

classes, as can be seen in FIGURE 10, so that Shoola will know how to interact with this

component.

FIGURE 10. This class inheritance diagram for the "agent" class in the analysis plug-
in shows the simplicity of implementing a new Shoola component.

This concept of an Agent is based on the original architecture, where components can

register themselves for access to OME resources, with the exception to the actual

registration mechanism. When Shoola initializes the AnalysisAgent class, it provides it

with access to the Registry, a catalog of Shoola services that have already been

instantiated and authenticated for the user. In particular, these services provide access to

server data including images on the Image Server. Additionally, as a type of the

AgentEventListener class, this component can register with the EventBus, the

underlying event mechanism to process and shuttle messages, to receive messages to

initiate an analysis. Finally, this analysis plug-in employs the modified plug-in

registration discussed in Section 2.4.3, by declaring the AnalysisAgent class and a null

argument for the preferences XML field to the org. openmicroscopy. shoola extension

point.

Once Shoola can recognize this analysis plug-in as a component within its architecture

and provide it with access to OME services, the analysis component needs to expose the

appropriate menu items to the end user to allow for callback. Since the Data Manager

serves as the launching point for managing and manipulating image data sets, this

component was modified so that it will dynamically accept extensions to add menu items

to its context menus. The extension point accepts a single class of type

MenuExtensionHandler SO as to provide a list of MenuItem objects and retrieve

41

A MUanagment

AgIe Event Ustener

1I t 11

AnariAget

associated zAgentEventS for a corresponding MenuItem. The MenuExtension class

located in the org.openmicroscopy.shoola.agents.datamng.extension package

provides the actual logic to handle these contributions. With this new Data Manager

extension point, the analysis plug-in can contribute the AnalysisMenuHandler class, its

implementation of the MenuExtensionHandler class. This class provides a submenu

containing a list of all analyses that are registered with the analysis plug-in. Upon the

actual selection of an analysis, the MenuExtension class fires an associated

AnalysisEvent object for the given menu item onto the event bus so that the analysis

component can respond.

3.3.2 Message Event Handling

Message handling between components within Shoola is managed via the EventBus. This

bus is an implementation of a single-threaded asynchronous completion token pattern and

serves as a conduit between Shoola agents. The EventBus provides a framework for

registered agents to fire objects that are subclasses of AgentEvent and, similarly, allows

for components to selectively register themselves to listen for specific events. In the case

of this analysis component, it waits and listens for the DataManager to fire an

AnalysisEvent object. This AnalysisEvent object contains all the needed information

to determine whether the item selected is a single image, a set of images, or a set of sets.

When such an event is received the analysis component renders its user interface, which

will be discussed in Section 3.6.

3.3.3 Shoola Abstraction

One of the underpinnings of any good architecture is providing a good abstraction to

complex systems. Likewise, it is important to develop a good external analysis module

that can provide a consistent interface to OME's plethora of services, without having to

fully understand the nuances of the entire OME system. The AnalysisManager at the top

of the class diagram in FIGURE 9 is the focal point for providing this API. This manager

class exposes Shoola functionality in a straightforward manner and provides the

42

functionality for analysis management that third-party developers can use by providing a

comprehensible abstraction on top of the existing OME-Java code.

The AnalysisManager relies on the ServicesManager class, which in turn extends

ImageManager, to perform any underlying Shoola function. Chief among the available

image functions are retrieving image planes and thumbnails. In particular, the

ImageManager abstracts the authentication with the OME Image Server using Apache

HttpClient, in order to recursively retrieve image planes from the server. Through the

ServicesManager, the AnalysisManager also provides facilities to add semantic types,

store annotations, notify the server of new external analysis modules, and decipher events

passed from the DataManager. Developers can take advantage of this single point of

contact, the AnalysisManager, to find the appropriate services to interact with the OME

server.

3.3.4 Local Image Management

To run an analysis on images that are retrieved by the AnalysisManager, planes for an

image are downloaded and stored locally. Local storage ensures speed and reliability

during analysis. The actual retrieval of image planes begins with a call to ImageManager

with the ID of a given image, dataset, or project ID as defined on the OME data server.

When the ImageManager receives a request, it translates the request to the OME image

server to retrieve an image stack. An image stack refers to 5-dimensional images stored

in OME's Z/T/C image model that can consist of z-planes, multiple time-points, and

channels. FIGURE 11 provides a simplified view of the role of the ImageManager as it

mediates requests from the AnalysisManager and the OME data server. As soon as the

ImageManage r retrieves the image identifier from the data server and meta-data about

how many planes, time-points or channels the image has, it makes a request to retrieve all

planes from the image server and stores them to the local image repository. Alternatively,

images can be streamed on-demand in the background while analysis is run in the

foreground.

43

OME OME
Data Image

Server Server
,i.. .

FIGURE 11. The ImageManager serves as the actual implementation class that
arbitrates between requests made by analyses through the AnalysisManager API
and the OME server. Retrieved images are stored in a local image repository on the
client, allowing for analyses to subsequently run on the saved images.

The local image repository is physically located in the local user's workspace under the

relative path of .metadata/.plugins/org.openmicroscopy.shoola.analysis/

input. Planes are stored on disk as TIFF images, with each plane named as an

aggregation of the plane's image ID, position in the z-stack, and time point, if applicable,

such that it takes the form: imageid_zposition_timeposition. tiff. When an analysis

is initiated upon a specific image ID or set of IDs, the appropriate image planes are

moved to a time-stamped folder within the input folder and the file pointers are handed to

the analysis code. Upon completion the planes are returned to the repository. This

isolation of working set images is an indirect requirement of image analysis tools such as

CellProfiler that expect pointers to directories of images.

3.3.5 Analysis Plug-in Extension Points

The Analysis plug-in provides a series of extension points to enable third-party

developers to integrate their own analyses. These extension-points work by pre-defining a

set of data that will be required and contributing plug-ins, such as third-party analyses,

provide the actual data to the extension point. The module.exsd file in the

org. openmicroscopy. shoola. analysis plug-in is the XML schema for this extension

point. It defines two types of element declarations: modules and semantic types. FIGURE

44

12 is an example of the contribution from the CellProfiler analysis' plug-in extension to

the analysis extension-point.

FIGURE 12. XML for the CellProfiler analysis plug-in's extension to the Analysis
plug-in's extension-point. The Analysis plug-in has previously defined a set of fields
that it requires and this CellProfiler plug-in simply provides the requested
information.

The first elemental extension for modules allows a developer to specify a series of five

attributes: cl.ass, name, xmlFile, description, and subanalyses. The class attribute

is the canonical name of the implementation of the abstract Analysi sHandler class. This

class defines the name of the new analysis, as well as a method to run the analysis that

accepts pointers to the image planes, an AnalysisWorkingSet, and an

IProgressMonitor as arguments. The name attribute simply indicates the proper name

for this analysis. The xmlFile is the relative path to an OME module definition file that

defines the analysis to the OME server and declares its relevant inputs and outputs. This

also allows all future annotation data generated by this analysis to be associated with this

server module. The description attribute is a short description of the analysis being

contributed. Finally, the subanalyses attribute is a Boolean value to indicate whether a

single analysis algorithm is being contributed or if the analysis provides multiple

algorithms. CellProfiler is one such multi-algorithm analysis tool.

The second extension element is the semanticTypes element. Since all annotation data

in OME is based on the concept of semantic types, the only way to store data from

individual analyses is if the required data type, or semantic type, exists on the server. This

45

<extension
point="org.openmicroscopy.shoola.analysis .module">

<module
class="org.openmicroscopy. cellpl lPrlr CellProfilerHandler"
description="CellProfiler cell image analysis software is

designed for biologists without training in
computer vision or programming to quantitatively
measure phenotypes from thousands of images
automatically."

name="Cell Profiler External Analysis"
subanalyses=" true"
xmlFile="definitions/CellProfilerModule. ome">

<semanticTypes
description="XML file containing CellProfiler Semantic Type

definitions that are not already defined in the
base ONE install"

xmlFile="definitions/CellProfilerSemanticTypes .ome"/>
</module>

</extension>

extension point element only has two attributes: a description, and an xmlFile path

which points to the OME file defining the semantic types that are used by this analysis.

The module and semanticTypes element maintain a one-to-many relationship.

3.3.6 Managing Third-Party Analyses

When the analysis component receives an AnalysisEvent from the Data Manager, the

extension points are dynamically read and stored into AnalysisModule objects. Since the

act of reading the extensions does not force the entire plug-in bundle to be loaded, this is

a lazy operation and AnalysisModuleS serve as proxy objects until they are actually

needed. When an actual analysis is selected, the corresponding AnalysisModule proxy

object is used to manage the retrieval of its AnalysisHandler implementation and

installation on the server.

Since this system supports an unlimited number of third-party analyses, new analysis

modules need to be managed in an organized manner. The ModuleCatalog was created

to perform pre-installation checks to determine whether or not a module has been

installed. This catalog maintains a list of all modules that have been registered on the

server by the Shoola client. This process is skipped if the module has already been

installed; however, if the module is not found in the catalog then both the module's

definitions and semantic types, as defined by the extension, are imported to the server

using the AnalysisManager to perform a remote import. This catalog of installed

analyses is implemented as a serialized Java List that contains all installed

AnalysisModule objects.

3.3.7 Executing Analyses

When an analysis is requested on a selected image or data set, an AnalysisWorkingSet

is generated. Simultaneously, the appropriate images are downloaded to the local image

repository and passed to the corresponding AnalysisModule. The AnalysisWorkingSet

object manages the entire state for a single instance of an analysis run from start to finish.

It includes all the relevant information for finding inputs and outputs, the type of analysis

to use, and how to locate the images that were downloaded.

46

As discussed in the previous section, the AnalysisModule contains information on how

to access the actual analysis and execute it on a given input. After the AnalysisModule

receives an AnalysisWorkingSet and module installation is complete, the appropriate

AnalysisHandler is instantiated. By using the information in the AnalysisWorkingSet,

the handler can easily find the images in the local image repository as well as the desired

output location for its analysis data.

Upon the completion of an analysis that has been executed, the AnalysisWorkingSet is

time-stamped and saved to the AnalysisHistory log. This retains all of the relevant data

that would theoretically be necessary to repeat the analysis. This log is a Java serialized

List object containing AnalysisWorkingSet objects of past analyses that have been run.

Since the AnalysisWorkingSet contains all of the metadata about a particular analysis

run, it is ideally suited to encapsulate the historical data.

3.3.8 Threading Model & Monitoring Progress

A user's expectation for an interactive system has been an important motivating factor

during development on a client-side external analysis module. Long running tasks usually

leave a user with a frozen or unresponsive user interface, leaving them incapable of doing

anything else except wait for the system to return from performing whatever synchronous

process was executed. Certain functions in image analysis are computationally intensive

and thus prone to long running time, which inevitably affects the responsiveness of the

user interface. To avoid this problem, tasks that could potentially take a long time to

execute were encapsulated in an Eclipse Job. These Jobs are an improved version of the

Java Thread class, offering the same asynchronous behavior of a Java Thread and also a

means to schedule threads relative to one another.

For any potentially long-running task, putting the task into the background provides a

better experience to the end user by providing a more responsive interface. However,

even if these tasks are threaded and running asynchronously, frustration can still arise in

the absence of feedback. Users often suspect that their software has crashed when it takes

47

a long time to run, or requires a significant amount of processing power. To mitigate this

problem, all Jobs and most of the methods in the analysis architecture can accept an

IProgressMonitor as a means to monitor the progress of a running task. An

implementation of this Eclipse interface can be found in the UI package as the

AnalysisProgressMonitor class. This class accepts feedback from the method about

the amount of progress completed, or even what is currently being done. This progress

can be expressed to the user either as textual feedback or as a progress bar. For example,

the runAnalysis method in the CellProfilerHandler is one function that accepts an

IProgressMonitor as a parameter. As a CellProfiler analysis executes, information such

as which image is being processed is provided to the progress monitor. Consequently, the

user interface can update itself providing the user with information about which image is

currently being processed.

3.4 Storing Annotation Data

One of the final steps in completing the analysis architecture was to persist analysis data

in some form or another, such that it could be retrieved at some future time for review,

visualization, or further analysis. In order to achieve these goals of client-side external

analysis and visualization of semantic data, this data needed to be storable both locally

and remotely to the OME server. The design I implemented satisfies the requirements and

provides an adequate method to persist data.

3.4.1 Design Considerations

There are several requirements for storing data within the OME framework. First, data

needs to be maintained within the OME data model for semantic type definitions. This

means that every piece of data has to be associated with a pre-defined semantic type on

the server. Strict typing requires encapsulating data with more information about the data

format when manipulating data. When storing and retrieving to the OME server, semantic

types add overhead that is proportional to the amount of raw data being worked. Second,

all of the data must be persisted in a form that supports future analysis either by the same

analysis module or by another module. Similarly, it should be viewable in either a generic

48

browser or through specialized data viewers specific to the analysis modules. Third, an

OME user must be able to selectively store data onto the server from a local analysis.

Without this capability, the added value of providing client-side external analysis to

OME is severely diminished. Finally, the process for persisting and retrieving data should

keep the OME client-server topology in mind, such that neither performance nor usability

is diminished. With these constraints and requirements, several designs were evaluated

for storing all, a subset, or none of the analysis data (FIGURE 13).

The first case, where no data is stored on the server, fails our requirement for allowing a

user to store external analysis data remotely. On the other hand, if all analysis data were

stored on the server, this would satisfy most of our requirements but impact efficiency

and usability. For example, the CellProfiler external analysis can generate an enormous

amount of data that is redundant or not sufficiently useful that it needs to persist on the

server. CellProfiler's association between filenames and image data is unnecessary since

OME already maintains its own association between images and files on the image

server. Likewise, obscure metrics such as complex Zernike moments may be

uninteresting to the OME user and pointless to store permanently.

Analysi Dta Aim"Is, Dlc

Remote Remoter- ----- S- -I
Oathartore Datastore

A B

Analysis Dta

Local Remote
Detastore Datastore

i A_

FIGURE 13. Three scenarios for data storage were considered. In (A) analysis data
would be transient from one run to another. (B) Every piece of analysis data is
stored on the remote server. (C) Hybrid storage structure would store a copy of
everything locally, but allow selective data importing to the OME server.

Generated analysis data can contain a significant amount of intermediary data that can be

used for more analysis or visualized, but is often uninteresting to other OME users.

49

Storing all of these intermediary results can lead to significant amounts of data flowing to

and from the server for the simplest of operations, which could potentially degrade both

performance and usability, failing our last requirement. Finally, for every specific type of

data that gets stored on the server, there must be a pre-defined semantic type, or a new

semantic type must be created. All of this can lead to a flood of semantic types that may

be too narrowly focused on a specific type of analysis and fail to maintain the

universality of meaning for a semantic type.

Our third design involves selectively persisting subsets of the overall data created by a

client-side external analysis. Specific data would be extracted from the set of results and

associated with the appropriate semantic types. This data subset would then be stored on

the server using the OME server API. This allows for associating data with images and

persisting shareable data on the OME server. However, this case does not persist all data,

including intermediary data, which can be used by future analysis or viewed by

specialized viewers on the client. If we go one step further, we can augment this case to

handle the storage of remaining data in either a specialized format on the same client, or

within a uniform data persistence layer. This would allow for maximum flexibility and

satisfy our requirements. We can suitably ensure that the final requirement for

performance and usability is kept under consideration by maintaining this hybrid storage

on both the client and the server, and by finding a suitable balance in the amount of data

selected for storage as semantic types on the OME server. This design provides a simple,

balanced solution to our requirements. Only universally interpretable semantic types are

stored on the server, ensuring all relevant data that should be public is stored on the

server. Intermediary data is stored in a locally accessible mechanism on the client to

provide easy access to all data generated by an analysis in case a user later decides that

this data is valuable. This local data tends to be vulnerable to data loss based on

tendencies to backup servers more often than workstations. However, primary data

should always exist on OME servers.

50

3.4.2 Remote Data Storage

As described in Section 1.1.1, all data stored on an OME server is strongly typed. This

means that all server data types are predefined prior to storage and will thereafter be

universally recognized within the OME system. In the previous section we came to a

design decision to selectively store subsets of analysis data onto the server. In order to do

this, the semantic types need to be defined in an XML file and imported onto the server.

<SemanticType Name="CellArea" ApplieaTo="F">
<Element Name="Tag" DBLocation="CELL AREAS.TAG" DataType="string"/>
<Element Name="Value" DBLocation=" CELL_ AREAS .VALUE" DataType=" float" />

</SemanticType>

FIGURE 14. This XML semantic type definition defines a CellArea to the server to
be a feature that contains a tag and floating point value.

If we take a closer look at the semantic type definition in FIGURE 14, the XML contains a

declaration of the name, along with associated elements for the actual data fields. In this

case, a CellArea has two elements - tag and value - of type string and float,

respectively. The attribute AppliesTo="F" on the first line indicates that this semantic

type refers to features. Within the hierarchy of OME data structures, a feature is a single

characteristic of an object within an image. In the case of CellProfiler, a feature could

represent a cell in an image and CellArea would be a semantic type associated with this

feature. There are also semantic types such as ImageCellCount that apply to an entire

image and are thus given the attribute AppliesTo="I".

To store these semantic types on the server and associate them with the particular

external analysis that was run on it, a module must be defined on the server, similar to

semantic types, that specifies what input and output semantic types it expects. In section

3.3.5 on the analysis plug-in's extension points, we mentioned the module definition file

in passing. An example of an actual module definition for the CellProfiler external

analysis can be seen in FIGURE 15. This module definition contains a declaration of inputs

and outputs, one of which corresponds to the CellArea semantic type as defined above in

FIGURE 14.

51

FIGURE 15. This shows the XML definition for the CellProfiler external analysis
module that establishes proper semantic data input and output. This definition on
the server allows for future analysis data to be properly attributed to this module on
the OME server.

One way of storing semantic type data and associating it with a client-side analysis

module on the server is by utilizing existing OME-Java package that provides an XML-

RPC layer to store semantic type objects directly. However, analyses such as CellProfiler

generate millions of points of data potentially creating significant memory requirements,

since OME-Java requires individual Java objects to be created for every data point. My

implementation of the analysis component takes advantage of the OME server's built-in

Perl-based spreadsheet importer' 6 for semantic types. This importer was not publicly

accessible from the OME-Java programming interface, so an Apache HttpClient

connection directly to the server was used to pass the data file. The importer accepts a

tab-delimited file formatted with an image identifier specified as the first column, and the

headings of the following columns in the format: semantic_type. semantic_element.

Two modifications were made to the importer to store data correctly in a strongly typed

OME format. The first was to augment the importer so that the data could be associated

with a particular analysis module. This involved modifying the

SpreadSheetImportPrompt.pm file to accept an additional Module parameter. If a valid

module exists then any data associated with that particular session would be associated

with the outputs of that module. The second modification was support for semantic types

for features, since the importer was originally designed for image-wide semantic types

16 http ://openmicroscopy.org/custom-annotations/spreadsheet_importer.html

52

<AnalysisModule
ModuleName="Cell Profiler External Analysis"
ModuleType="OME: :Analysis:: Handlers: :NoopHandler" ProgramID=""
ID="urn: lsid:openmicroscopy. org:Modul: 34">
<Declaration>

<FormalInput
Name="Files"
SemanticTypeName="OriginalFile" Count="+">
<Description>The original image files</Description>

</FormalInput>
<FormalOutput

Name=" CellArea"
SemanticTypeName="CellArea" Count="*">
<Description>Feature Call area</Description>

</FormalOutput>

</Declaration>
</AnalysisModule>

only. A simple modification to the SpreadSheetReader.pm file was made to enable

recognition of features. Files imported to the spreadsheet importer implicitly require a

Tag element for each corresponding semantic type associated with a feature.

Additionally, this Tag element should be uniquely defined by an integer that is associated

with an image.

Image.id CellArea.Tag CellArea.Value
5 1 667
5 2 439
5 3 832
5 4 526
5 5 298

FIGURE 16. This is sample spreadsheet data suitable for the spreadsheet importer.
There are five CellArea data points for the image with an ID of 5. The Tag column
references each distinct cell object and the actual cell area can be found in the last
column.

For example, to import five points of data for the CellArea feature on an image

identified by an id of 5 the imported file would be formatted such that the first column

contained the image identifier, as in FIGURE 16. The second column would contain the

Tag element for the CellArea semantic type, where each Tag value corresponds to a

unique cell in the image. Finally, the last column would be the Value element, which is

the actual area of that particular cell.

3.4.3 Local Data Management

A local data store was therefore created to handle the storage of remaining data in tab-

delimited files. This data store is physically located in a time-stamped folder in the local

user's workspace under the relative path of

.metadata/.plugins/org.openmicroscopy.shoola.datastore. Inside this time-

stamped folder are two sub-folders, FeatureData and ImageData. To store data,

DataStoreManager exposes a method via the AnalysisManager that accepts parameters

for either feature or image data type and a time-stamp. Subsequently, this method

provides a FileWriter for external analyses to write their data directly to a handle

properly localized in the data repository.

53

The format for the stored data is similar to the OME spreadsheet importer requirements,

but is significantly more flexible. The only requirement on the format of the data is that

the first column lists the Image. id, and if the data is for features, then the second column

lists the Tag. If the image happens to be part of a time-series, then the image id is suffixed

with an underscore followed by the time-point. All remaining column headings are

unconstrained. This allows for flexible storage and generalized logic to read the data

store. The DataStoreManager provides a public API to access this data in a read-only

fashion.

FIGURE 17. The local Datastore class diagram expresses the relationships for classes
that are predominantly used to parse and retrieve data saved from analyses.

Requests to read data from the local data store are based on the timestamp of the analysis

and on the type of data desired - feature or image data. From the class diagram in FIGURE

17, we can see the dependencies between the classes needed to manage the local data

store. The DataStoreManager performs the search for the requested files and parses the

column headings from the original file to produce column objects. Adhering to the lazy-

load model for code development, these column objects are proxy objects that contain

information about a particular column in a file, but do not read the data from the file until

the data from the column is actually requested. As soon as a Column's values are

accessed, the data file is read and the data is either returned as a List of values

corresponding to the entire column, or processed into an ImageData object if data for a

single image id is requested. An ImageData can contain a mapping between the Tag and

respective values, or an even more complex set of nested maps if the image id requested

54

Da nagmnt

DeaStorolngr

1 1

Coun

ICSVPanw IL Da. I
_~~~

::~rae _ mD

is part of a time-series. In the latter case, the map returned would be the time-points

mapped against tag-value maps.

3.5 CellProfiler

There are two specific aspects

Matlab and storing output data.

unique to getting CellProfiler running - interacting with

FIGURE 18. The CellProfiler plug-in and its simple class interactions with the
Matlab plug-in are shown in this figure.

Since CellProfiler is a collection of Matlab scripts, the biggest challenge in getting

CellProfiler to work with the new architecture was getting Shoola's Java-based

architecture to interact with Matlab. In order to do this, an open source package called

JMatLink' 7 was used to provide the interface between Java and Matlab through Java

Native Interface (JNI). The package was compiled on both Windows and Mac OS X

platforms so that CellProfiler analysis could transparently run on both platforms. Once

native calls could be made to Matlab, understanding the actual CellProfiler architecture

was essential to integrating it with Shoola.

CellProfiler is a collection of Matlab analysis scripts that are strung together into an

analysis pipeline, where outputs of one script are inputs to another. Additionally, a

7 JMatLink. http://imatlink.sourceforge.net.

55

Matlab-based UI drives the entire analysis and manages the script execution with all the

correct parameters. After working with the developers of CellProfiler, the interface for

CellProfiler was subverted, allowing scripts to be run headless by directly setting a

number of parameters. All of this work to set the correct CellProfiler parameters in

Matlab is encapsulated in the CellProfilerHandler class, which manages creation of a

Matlab instance and sets the appropriate parameters to enable pipeline analysis.

The subversion of the CellProfiler UI takes advantage of the fact that CellProfiler is

capable of running in batch mode and distributing workloads to a Matlab cluster. When

CellProfiler runs in this batch mode, it runs without a user interface and a script file that

loops through the input images and feeds them to each individual script in the pipeline

drives analysis. This is identical to the model of how the CellProfilerHandler class

provides analysis to Shoola users without requiring them to interact with the CellProfiler

interface.

Persisting the data from an analysis is equally important as being able to generate the data

itself. As we have seen, raw CellProfiler data should be storable as both image and

feature data, locally and remotely. The implementation requires the raw data to be

slightly modified so as to be compatible with both remote and local data stores. On the

server, only specific columns of data from the results are processed as governed by the

module outputs defined by the CellProfiler plug-in. The SemanticData class in FIGURE

18 is used to process the spreadsheet data that results from a CellProfiler analysis to map

appropriate columns of data to OME semantic types. This class parses out remotely

storable columns of data, and ensures that they are properly formatted as per section

3.4.2. This means that image data must have an appropriate image id column, and column

headers are renamed to semantic type names. Similarly, feature data must also have an

image id column, and Tag columns for each semantic type stored. This same class also

makes minor modifications to store all data into the local data store. It ensures that there

is an image id column, and optionally a Tag column for feature data.

56

3.6 User Interface

A simple user interface was created to demonstrate the use of the external analysis

architecture described in this thesis. The interface provides a means to execute

CellProfiler analysis pipelines within the Shoola architecture. This particular interface

was created using Java Swing and AWT and is co-located in the external analysis plug-

in. The structure of the interface follows the Model-View-Controller 8 (MVC) design

pattern to provide versatility and abstraction. The MVC pattern defines a separation

program functionality where the model defines internal data structures and state of the

program, the view defines how the model is rendered, and the controller performs actions

in the program that affect the model.

Ul IWa1ce

FIGURE 19. This class diagram for the user interface shows the relationships
between classes. The AnalysisBrowserModel is the model, panels are views, and
listeners act as controllers as per the Model-View-Controller (MVC) paradigm.

The relationships between classes in the user interface are presented in the class diagram

in FIGURE 19. This diagram highlights the relevant classes that will be discussed by this

section in further detail.

18 Java BluePrints - Model-View-Controller. http://java.sun.com/blueprints/patterns/MVC-detailed.html

57

I

3.6.1 Model, Listeners, and AnalysisBrowser Classes

The role of the model is central to the MVC paradigm. It is responsible for managing the

application state, responding to queries about state, exposing the underlying business

logic, and notifying views of changes. The AnalysisBrowserModel class provides this

functionality by maintaining the variable parameters for a particular analysis state. This

model class can be updated by the views and by the application, and appropriately fire

updates to respective views. The AnalysisBrowserModel implements the Observable

interface, to allow other UI components to register and listen to state changes that occur.

Individual panels, discussed in the following sections, correspond to the views in this

model that render content and allow user interactivity.

The controllers in this system are manifested in the form of listeners:

AnalysisTreeSelectionListener, AnalysisTreeExpansionListener and

AnalyzeButtonListener. These listeners define how the interface interacts with the

external analysis architecture by mapping an action to model updates and selecting the

correct views for response. The tree selection and expansion listeners manage the

rendering and expansion of the tree that lists the available analyses to an end user. This

requires queries to the AnalysisManager for available analyses and updating the model

to render the analysis panel. The button listener initiates the image analysis by forcing the

download and caching of images to the local image store and generating an

AnalysisWorkingSet that is passed to the AnalysisManager for analysis execution.

Finally, the AnalysisBrowser class bootstraps the views in this interface when the

analysis plug-in receives an event on the EventBus from another component in Shoola.

This parent container is responsible for rendering the page selector found on the left-hand

side of the screen and responds to updates to the model to determine which panel to

render on the right-hand side of the screen.

3.6.2 Analysis Selection

The workflow for running an external analysis begins after a user has selected a particular

image, data set, or project to analyze in the Data Manager. FIGURE 20 shows the two-

58

paneled user interface that is rendered by the AnalysisBrowser upon selection. The left-

hand side-panel, generated by the TaskbarPanel class, allows users to navigate the

analysis interface. The right-hand panel contains a description of the selected image or

image sets, a list of all registered analyses and sub-analyses, and a short description of the

currently highlighted analysis.

1 04 _ I 7 I. -

Image Name : Sabrina 120205 HeLaDEM D_6wellsOl 03_R3D.dv
Image ID - 592
rIage at : 20 -03-01 n:2s12.833356 i

? '..=-.:=....... -..................

. Avalable Analyses
i Cell Proftler Exterral Analysis

FindCellsPipeniat
* ExampleFlyPIPE.met

* TestMorphPipeline mat
FlyPipeine.rrmat

* .svn

CellProfiler cell image analysis software is
iidesigned for biologists without training in computer;

ision or programming to uantitatively measuze
'phenotypes from thousands of images automatically.

riintor'v ·

Ne~xt E ~hic

FIGURE 20. A screenshot of the analysis selection screen shows the meta-data for the
selected image or data set. Installed and available analyses are listed along with
potential list of sub-analyses in a tree. Descriptions of analyses are provided by
third-party plug-ins.

Meta-data information about the image or images selected is gleaned from the event that

is passed in to create the AnalysisBrowser. This event is stored by the

AnalysisBrowserModel and used to display the information at the top of the screen. The

tree of analyses is rendered through a JTree and populated using the expansion and

selection listeners described in the previous section. The description of the highlighted

analysis is retrieved from the extension point that is declared by the external analysis

59

Settings

Status

. . . '

., . 1.
!

- ------ ------

i

plug-in. The analysis module happens to be CellProfiler, so the description is defined by

the CellProfiler plug-in's extension to the external analysis plug-in.

3.6.3 Settings Modification

Images stored in OME can have multiple channels, or wavelengths. In the next step in

preparing an analysis is to identify which image channels are available and select which

ones to analyze. This could be performed intelligently by examining the meta-data

information associated with the image to determine which filters were used on the image

and automatically matching them up with the inputs to the analysis. However, for

simplicity the Settings panel shown in FIGURE 21 provides manual association between

channels and inputs. This panel also provides a thumbnail of the first image in the

channel, defaulting to the first z- and time-points in the case of image stacks or time-lapse

movies, respectively. These channel thumbnails are retrieved using the ImageManager

via the AnalysisManager.

60

godVjj1NL7 , ! Tease match the ~ follow~ing image ~chnrels t e correspoig infort aion. ., I S - _,_..... _...._.._.... n_. ^ . .. _........., . ^. __ .at,.

Analyze

.. _ .._...............................
!Ignore .

Status

7-t

Hitory

..... A. ~~~~~~~~~~~~~~~~l Ate; el

FIGURE 21. A screenshot of the analysis settings screen shows available channels of
the current selection. Drop-downs enable a user to match channels with analysis
inputs.

The drop-down menus allow the user to match each thumbnail channel with an input or

completely ignore the channel. After a user has identified the desired pairings, the

mapping between channel and input is stored in the AnalysisBrowserModel in preparation

for the analysis. At the bottom of this panel is the Analyze button that initiates the

external analysis module's code that subsequently kicks off the full image analysis. As

described in Section 3.6.1, the AnalyzeButtonListener is the controlling mechanism in

this interface. It processes and constructs an AnalysisWorkingSet that can be used to

perform an analysis by reading parameters, such as the channel mapping, from the model.

3.6.4 Monitoring Progress

This user interface was built on the paradigm of providing feedback often and with

sufficient detail to prevent users from wondering what is happening under the covers.

61

Nucli inpt 1t 1
Cels rkn.u 21

Cytoplasm [Input 3]
Input 4

- - �a�ib3�

-- --

li [Inpu II ".. 1 -1 --. ... -- 1 ...

I
i,.^. 0 11_ll _- - - ._" I

r

i

This also reduces user frustration and provides a more responsive dialog for debugging

issues that might arise.

WL%=Wffi-nng rN."M ~CIS~jR

Anyze

Analyze

J Donloading images to cache

:Running Cell Profiler External Analysis on planes.
Running analysis on data set
Initializing CellProfiler
!Starting atlab Engine
Running CellProfiler on 428 images.
?nalyzing image set I of 428.
.nalyzing image set 2 of 428.

Settings

.HIt

History

....

C04441 it 4-77W I

FIGURE 22. A screenshot of the status screen shows comprehensive progress
information and a meter for a measure of completion.

The status panel provides a streaming frame of text that describes ongoing analysis

processes. Since image analysis duration varies from minutes to hours, it is important to a

user to know that a particular analysis has not crashed and that the software is continuing

to work on the user's behalf. The AnalysisBrowserModel drives the text that is

produced in the status panel; in turn, the model class gets its status by passing the

AnaysisPrcgressmonitor as an argument through respective stages of the analysis.

This progress monitor class allows receiving classes a way to output status to the user by

dynamically updating the status panel when it receives a change, avoiding user frustration

(see FIGURE 22).

62

I

i

4 -·'
i . , .

"`

i

3.6.5 Viewing History & Importing Data

Following the completion of an analysis, the user is presented with a final screen that

provides a comprehensive listing of all analyses that have been executed on this

particular client, including the one which just finished. This panel includes a timestamp, a

description of the data that was analyzed, the name of the analysis, and the actual path

pointing to the output analysis data in the local data store. This information, shown in

FIGURE 23, provides a pointer back to when and how a particular piece of data was

analyzed and allows us to establish provenance on a particular piece of analysis.

OWN 0M.-8~jl

Analyze

Settings

a- r s
Status

Run on . Data set Analysis Output Folder .
2006225.0052 Dataset Name: TestMorphDataset ID :5 Cell Profiler External Analysis C:,Documents and Settir

120060225.0140 Dataset blame: FlylmagesDstaset D : 6 Cell Profiler External Analysis C: Documents and Setti
.20060302.2221 Image Name: Sabrina 120205 HeLa DEV.. Cell Profiler External Analysis C:Docmerents and Settir
2060302.2223 .. Image Name: Sabrina I 20205 HeLe DEV., Cell Profiler External Analysis C:ocuments and eftir
:2006030.2248 1mage Name. SabnrSna1 2020SHeLaEV... Cell Protiler External Analysis C:Documens and Settir,

0068303.30ss155 Dataset Name: FlylmagesDataset tD : 8 Cell Profiler External Analysis C:tocunerts and Settir
20060303.0233 Dataset Name: FlylmagesDataset D : Cell Profiler External Analysis C:iDocuments and Settir
200630330240 Dataset Name: FlymagesDataset ID : Cell Proiler External Analysis C:iocuents and Setti
20060303.025 1 Dataset Name: TestMorphDataset ID : Cell Profiler External Analysis IC:Documents and Settir'
'20060303.0251 Ditarset Name: TestMorphDCatset ID : 5 Cell Profiler Exteral Analysis iDocuments and Settir
2C0z60:303.CI'r' 'Dataset Name: Testhorph~ataset D :.Cell Protiler External Analytts iC:,Docuer-ts and Settr,:20060303 0251 !Dataset Name: TeztMorphDataset ID : 5 Cell Proiler External Analysis C:Documents and Sttir:. - - i...................... _
'.20060.0254 Dataset Name: TestMorphDataset ID : 5 Cell Protiler External Analysis C:D)ocuments and Settir
.200.y 3?:0_51._2lD?.aset_ Name TestM..phD.. _as D 5_ .. Cell Proiler Extrnal Analys CDocuments and ettir
:2 000303 0259 Daetaet Name: TestMorphDataset ID : 5 Cell Profiler External Analysis C:ocuments and Settir
200601o 1403 Image Name: Sabrina 120205 HeL DEV ... Cell Profiler External Analsis C:Docurnents and Settir

<~~~~~~~~~~~~~~

FIGURE 23. The history screen shows a list of historical analyses performed by this
client along with relevant time-stamp, analysis, input, and a path to output data.

Another important feature of this panel is a means to import the selected analysis data

from the local data store to the server. Simply right-clicking on an entry provides a menu

to import the data into the OME server. The data used to populate this table is retrieved

from the Ana:l.ysisHistory log, as discussed in Section 3.3.7. The actual data that gets

imported to the server is the subset of all data that has been strongly typed to semantic

63

.

types already defined by the particular analysis module. Through the use of the

AnalysisManager, this data is imported using the modified spreadsheet importer

discussed in Section 3.4.2.

64

65

CHAPTER 4
Data Visualization & Manipulation

Chapters two and three provided a comprehensive view of an external analysis

mechanism within a componentized architecture augmenting the OME system with the

ability to perform third-party image analyses within a unified framework. This chapter

will briefly discuss some of the direct consumers of the componentization and external

analysis architecture.

4.1 Data Visualization

The best active demonstration of the architecture presented by this thesis is the

LoViewer, a visualization tool that has been designed to work with OME and has been

implemented to work on top of the plug-in architecture. The LoViewer is a visualization

component developed by Tony Scelfo in the Sorger Laboratory at MIT in collaboration

with the Open Microscopy effort. It was originally intended to visualize semantically

typed data stored on the server. The interface for this visualization tool can be seen in

FIGURE 24.

This semantic type viewer is built as a plug-in within the componentized model and takes

advantage of the extension points to register itself with the Shoola client. Similarly, the

viewer plug-in extends the Data Manager to provide a menu to access and launch this

visualization tool. As described in previous chapters, by developing within the

componentized architecture, the data visualization tool can easily be added or removed

from Shoola clients and possesses a clear graph of class dependencies. This provides a

66

straightforward understanding of how this plug-in fits in and interacts with other

components.

d S .. · i
F Et Help

.. v;_..... _.. __..........

J O16 Sever gLcai AWAIS1,i . _

Pi. Eit H. :.., -.

,X: CeiLocstion - X .:! O° OO° ° <j ;> :_;.ect~~~~~er~~~e~~~c - ° °V° O O 000 O..tk,,: 00 00c:O 00X00 0 00 0oXC_1_L_ 00 0 0 00 00 o 0 o
. 4e-.: O °y O O O O.°.° ' o° o ° 0 0°

Gi-Cl~rs '4 °° °O {Do °° ° ;3 0 0 0 0 0 00

6 Ce6ccoertricf 0!00 0 0 0 0 0e :!.: · e~ce0 0 0E: o 0 0 , CelLcio' . .- 00 0 0 v 0 ,L< ri ~~~~~~Ce~hli~~n~o .o o0 0 0 0 00: 0,;· 0 00000 00
M3 CrPermer v 0 0 0 ° 0 0
!a , *);.i Cef lSolidfg ,tv 0 0 0 0 i Nuc.'=oArea , .j> . - 0 0 0 0

NuceEccerct3y 0. 0 0 0 o 0 0 0 0

5 iS Nue vlexiet 0 . . O O () r , 6i)cle'iLocaon 0 0 . 0-. tuc~einorAx 0 0 0 0 o

6i NUclePerreer '1E2 ° ° O O

'1i NucleboidlY :_.O* * C!~~c,~,Axsi o00 o o 00

0 0
:W c ~, . 013.S2 o0 0 (G.3o11S 0 o 0 0 0Sdllwepoirt . -*o {;

e 1 OE2 0 5 O r |W N~r'.&.1M,"y 0E2 0 0 0 oi! a ~~~~~ ~~~~0 0 00o:,M N. , iC:= to0 0 0 0 0
° 0 !

0 o
C, 0 0 0 [

2.1E200

f~~~~~~~o~~ ~ O O ' (ty

0

ginlin x on. . -

'~.' 1 OE2 f~~~x . 0I 'E

I., 0Is-*W. .. @ w '~~ He (9''11_ 1o }[..l ot Dat J-I

l X r. . . M 1.. IE2 2E2 2.82 3 E 4: 4. 532 6'O 2
".N.'. 'i:

FIGURE 24. The LoViewer is a data visualization tool built to extract and screen
OME data for interesting trends and relationships. This screenshot demonstrates its
visualization capabilities on data that was saved by a CellProfiler external analysis.

The most fundamental product of the external analysis architecture is the sheer amount of

feature data produced by image analyses such as CellProfiler. This data viewer takes

advantage of the fact that such a large volume of data is more effectively analyzed

visually than by other means. Reading highly structured data from the remote storage

facilities on the OME server, as well as the relatively unstructured data that is stored in

the local data repository, allows this tool to perform its visualization. This provides users

of OME an invaluable way to quickly and effectively review image analysis data, as well

as the flexibility to view and work with different types of data.

67

4.2 Time-Series Analysis and Cell Tracking

Another application of this architecture has led to the creation of more advanced

algorithms to manipulate data generated by external analyses. For example, feature data

produced by CellProfiler on a time-series movie can provide data at the discrete time

points, but these results give a disjointed picture of the overall flow of the movie. In

particular, one of the areas of research within the Sorger Lab involves studying the

division of cells by live-cell time-lapse imaging. To understand this data it is necessary to

track individual cells, accounting for cell splits and merges, and maintain a family tree of

parents and daughters.

A cell-tracking module was written to take advantage of cell location and area data

calculated by CellProfiler, and stored in OME, via a regressive cell-tracking algorithm.

This algorithm is a modified version of one introduced by Withers and Robbins' 9 that

uses distance and overlap ratios to link cell lines within a movie through splits and

merges. The modified algorithm provides regressive correction of simple linkage errors

that occur when cells appear or vanish between frames, some due to division and others

due to death. FIGURE 25 provides a visual graph of the data for several cell-lines in a

movie being tracked over a period of six time points. It provides a complete picture of the

cell splits and demonstrates the regressive matching of orphaned children with potential

parents.

19 J.A. Withers and K. A. Robbins, "Tracking Cell Splits and Merges," IEEE, pp. 117-122, 1996.

68

FIGURE 25. This figure shows a time-series graph tracking cell division in a movie.
Each individual circle indicates the frame and the pixel location of the cell. The
solidity of the lines indicate the probability of the connection.

This tracking module was written as plug-in to the componentized-Shoola architecture,

taking advantage of the remote and local data store facilities, similar to how the

LoViewer visualization tool reads and displays data. This tracking effort underscores the

idea of how results from external analyses can be easily accessed in OME by data

manipulation tools or algorithms. This provides biologists with an effective set of

techniques for image analysis that fit nicely within a user's workflow in OME.

69

70

CHAPTER 5
Conclusion

This thesis describes a modular architecture that improves the extensibility of OME client

software as well as a means to perform image analysis on client workstations using

remote and local data stores. It demonstrates some of the different use cases for this

project, and exactly how this architecture can augment a user's ability to process,

visualize, and manipulate image data. This chapter will revisit the model of workflow

introduced in the first chapter and how the components described in this thesis support

this workflow. Additionally, since there is substantial opportunity for future work in the

field of biological microscopy, some topics for further study will be discussed.

5.1 Workflow

Revisiting the OME workflow (FIGURE 26), we can now see the logical progression and

development of these pieces throughout this thesis, and how these pieces support this

workflow and satisfy the requirements that had been set forth. We can see that each of the

red-highlighted blocks within Shoola, such as the External Analysis and Local Data

Store, are logical plug-in components within the componentized architecture. The

pathway marked with shows the retrieval of planes for a desired set of images using

the External Analysis component's API to interact with the OME image server (FIGURE

26). In pathway 0, third-party analyses can analyze images in the local image store to

produce resulting analysis data.

71

FIGURE 26. This figure revisits the software workflow summarizing some of the
functionality that was implemented by my thesis project. Pathway 1 indicates image
download from the OME server, 2 shows analysis results from an external analysis,
3 and 4, respectively, show remote and local data storage of analysis data. Pathway
5 shows LoViewer visualization of local or remote data stored, and 6 shows data
manipulation using tracking algorithms.

Once this data is generated, the analysis architecture provides the ability to store analysis

data, either on the remote server) via the spreadsheet importer or in the local data store

() through the DataStoreManager. Finally, as covered in chapter four, some of the user-

visible applications of the external analysis architecture - data visualization and tracking

- can take advantage of the stored analysis data in pathways) and (.

I have discussed three requirements for building an external analysis architecture. The

first requirement was scalability and extensibility of the architecture. Chapter two

described a componentized architecture in Shoola that allows us to create a scalable and

extensible client. Individual block components in FIGURE 26 build upon this

componentized architecture. Second, this system needed to be available to more

platforms than those supported by the server. By developing an analysis architecture on

the Shoola client, image analysis is available on any platform that can run a supported

72

Java Virtual Machine (JVM). The number of platforms that support running a JVM is

significantly more than the number of platforms supported by the OME server. Third,

data must be stored in such a way that it can be easily retrieved, visualized, or

manipulated. Chapters three and four show exactly how this external analysis architecture

supports this functionality, and we can see where they fit into the workflow in pathways

(, (, ® and (in FIGURE 26.

5.2 Future Work

Much of the work that has been done in this thesis has been based on the suggestions and

requirements of biologists. There are two future directions for this project: architectural

work and extensions on the analysis framework.

One area of work may be to re-design the agent initialization framework. The current

initialization sequence forces agents to be loaded on start-up, and then allows the Eclipse

platform to handle the initialization of any remaining bundle dependencies. This

initialization sequence can be rewritten such that all agents, or components, are lazily

loaded. Another interesting project would be to package plug-ins into features and take

advantage of the Eclipse's update management architecture. This would allow for easier

management of client systems and the ability to quickly roll out new features.

In the area of analyses, augmenting data manipulation by providing a facility to users to

chain analyses together between disparate tools, by a data-centric model similar to the

server analysis chains, would help improve automation of the screening process. Finally,

building out new analyses or integrating with more third-party analyses would be a clear

demonstration of the architecture built out in this thesis and provide biologists with

invaluable access to additional tools.

73

74

APPENDIX A
Source Code & Documentation

The complete source code with associated Javadoc documentation can be accessed via

subversion on the OME project servers:

Source (view only):

http://cvs.openmicroscopy.org.uk/svn/boston/

General project documentation:

http://www.openmicroscopy.org.uk/

Code for the external analysis components are located under the

org.openmicroscopy.shoola.analysis folder. CellProfiler related source is under

org.openmicroscopy.shoola.cellprofiler. Required Matlab and local data store

plug-ins are in org.openmicroscopy.shoola.matlab and datastore respectively.

Similarly, the cell tracking plug-in and all algorithm implementations can be found in

org.openmicroscopy.shoola.tracker. All sources in subversion tree is in

componentized architecture hierarchy, with the first level being the root folder for

individual plug-ins (with the exception of the OME-JAVA folder).

75

