US008141070B2

a2z United States Patent (10) Patent No.: US 8,141,070 B2
Chan et al. (45) Date of Patent: Mar. 20, 2012
(54) BRIDGING CLASS LOADER NAME SPACES 6,711,579 B2 3/2004 Balakrishnan
2001/0037417 Al™* 112001 Meyercccceevvvevnnene 709/332
. : . 2002/0092000 Al 7/2002 Srivivasan et al.
(75) Inventors: ihi;don E CDha.n’ SAor?lemHthiA aés.)’ 2003/0105883 Al 6/2003 Gibbons
ndrew K. Davis, Arlington, (US): 2003/0177484 Al* 9/2003 Bosschaertetal. 717/166
Keith A. Kimball, Hollis, NH (US); 2004/0015849 Al 1/2004 Sanchez, II
Melaquias E. Martinez, Boylston, MA 2004/0049776 Al1* 3/2004 Fomenko etal. ... 719/328
(Us) 2004/0060058 Al 3/2004 Liang et al.
2004/0068733 Al 4/2004 Longbardi
. . . . 2004/0068735 Al 4/2004 York et al.
(73) Assignee: International Business Machines 2004/0148609 Al 72004 Ji f al
Corporation, Armonk, NY (US))) tmenez et al
* cited by examiner
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 . .
U.S.C. 154(b) by 838 days. Primary Examiner — Chuck Kendall
(74) Attorney, Agent, or Firm — Steven M. Greenberg, FEsq.;
(21) Appl. No.: 11/136,643 Carey, Rodriguez, Greenberg & O’Keefe
(22) Filed: May 24, 2005
57 ABSTRACT
(65) Prior Publication Data
US 2006/0271922 Al Nov. 30. 2006 Embodiments of the present invention provide a method, data
U processing system and computer program product for bridg-
(51) Int.CL ing class loader name spaces. In one embodiment, a data
GO6F 9/44 (2006.01) processing system can be provided for bridging class loader
GO6F 9/445 (2006.01) name spaces. The data processing system can include mul-
(52) USeCl oo, 717/166; 717/167 tiple, different class loaders disposed within a single run-time
(58) TField of Classification Search None environment. The data processing system further can include
See application file for complete search history. a class loader bridge programmed to moderate access to the
different class loaders in response to a request to load an
(56) References Cited object from one of two programming models containing

5,983,019 A
6,282,703 Bl

U.S. PATENT DOCUMENTS

11/1999 Davidson
8/2001 Meth et al.

objects concurrently in the single run-time environment.

16 Claims, 4 Drawing Sheets

310 400 320
Class Loader/Mode! 1 . Class Loader/Model 2
Bridge

360|Type1 |
3 A
<instahce of> . >
330, <instance o
OBJ1 300A
ﬂ | nvocation
Handter
<direct reference>
390B
| nvocation
Handler
350

Parent (Shared) Class Loader

VIRTUAL MACHINE

370

U.S. Patent Mar. 20, 2012 Sheet 1 of 4 US 8,141,070 B2

110 120
Class Loader/Model 1 Class Loader/Model 2
400
Bridge
130 140
OBJ1 oBJ2
<instance of> <instance of>

150

160 | Type Parent (Shared) Class Loader

VIRTUAL MACHINE

170

FIG. 1

U.S. Patent Mar. 20, 2012 Sheet 2 of 4 US 8,141,070 B2

210 400 220

Class Loader/Model 1 . Class Loader/Model 2
Bridge

<instahce of>

<instahce of>

290

| nvocation
Handler

250

Parent (Shared) Class Loader

VIRTUAL MACHINE 270

FIG. 2

U.S. Patent Mar. 20, 2012 Sheet 3 of 4 US 8,141,070 B2

310 400 320

Class Loader/Model 1 . Class Loader/Model 2
Bridge

360| Type1 Type1]360

ce of>
OBJ1 Proxy

<instance of>

390A

I nvocation M
Handler

3908

I nvocation
Handler

350

Parent (Shared) Class Loader

VIRTUAL MACHINE 370

FIG. 3

U.S. Patent

460

Proxy Object

Mar. 20, 2012 Sheet 4 of 4 US 8,141,070 B2
410
Get Object for
Loading
420 l
Get Type
440
Loaded —
By Shared Parent '}1\10 Bridging
Class Loader? ecessary
Proxiable Across
Class Loader
Boundaries?
480
o Serialize and
Serializable? Pass

P Done -

FIG. 4

US 8,141,070 B2

1
BRIDGING CLASS LOADER NAME SPACES

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the execution of computer
code components in a run-time environment and more par-
ticularly to class loaders in a run-time environment.

2. Description of the Related Art

The class loader mechanism forms part of the foundation
of the modem, virtual machine. In particular, class loaders
provide the translation technology which can convert serial-
ized byte code into named classes for execution in the virtual
machine. Notably, class loaders can perform this conversion
regardless of the storage means and location of the byte code.
As aresult, the virtual machine need not know the operational
specifics associated with the file systems storing the byte
code.

In conventional runtime environments like the Java™ runt-
ime environment (Java is a trademark of Sun Microsystems of
Palo Alto, Calif., United States), classes can be introduced
when they are referenced by name in a class that already is
executing within the runtime environment. While the entry
point class of an application can require some individual
processing exclusive of the class loading mechanism, subse-
quent attempts at loading other classes are performed exclu-
sively by the class loader.

At its simplest, a class loader creates a flat name space of
class bodies that are referenced by a string name. For
example, in the case of the Java runtime environment, a class
loading definition might include:

CLASS MYCLASS=LOADCLASS(STRING
CLASSNAME,BOOLEAN RESOLVECLASS)

In this exemplary implementation of the loadClass()
method, the variable className encapsulates a string which
is understood by the class loader to uniquely identify a stored
class implementation. The variable resolveclass, by compari-
son, is a flag which when set notifies the class loader that
classes referenced by the class associated with the class name
should be resolved. That is, any class referenced by the class
associated with the class name should be loaded as well.

In the Java runtime environment, the Java virtual machine
(JVM) can include one class loader embedded within the
virtual machine. Referred to as the “primordial” class loader,
this embedded class loader automatically resolves references
to class names by reference to a specified repository of trusted
classes which can be run by the virtual machine without
verification. Notably, in the primordial class loader, a default
implementation of the loadClass() method can be imple-
mented.

The class loader generally is responsible for resolving a
type within a given name space to an implementation of a
class, and for loading the class into the virtual machine. If the
same, identical type is loaded into two different name spaces
through different class loaders, as represented by two differ-
ent class instances, the type checking semantics of the envi-
ronment inherently defines those types as incompatible. In
consequence, a class case exception can be thrown.

As it is well-known in the art, different programming mod-
els can exist within a single run-time environment. Exem-
plary programming models can include a Java version 2.0
Enterprise Edition (J2EE) container and an Eclipse tools plat-
form. Yet, each model can utilize different class loading
semantics. In consequence, when it is necessary for the dif-
ferent programming models to interoperate with one another,
exchange information with one another, and share services

20

25

30

35

40

45

50

55

60

65

2

with one another within the same virtual machine, it can be
necessary to bridge the name spaces in a manner to avoid class
cast exceptions and to minimize the incurred communica-
tions overhead.

Specifically, when attempting to run components designed
for different programming models inside a single virtual
machine, it can be necessary to isolate and re-create the class
loading semantics of the original model to enable the com-
ponents to run unmodified. Isolating and re-creating the class
loading semantics of the original model to enable component
to run unmodified can be problematic, however. Also, altering
the class loading semantics for the components of an appli-
cation can require the componentization and deployment of
the application in each of the environments in order to cor-
rectly load the shared interfaces from a common class loader.
Of course, to do so can negate the goal and cost savings of not
altering the existing programming models.

BRIEF SUMMARY OF THE INVENTION

Embodiments of the present invention address deficiencies
of'the art in respect to class loading of components in different
program models and provide a novel and non-obvious
method, system and apparatus for bridging class loader name
spaces. In one embodiment, a data processing system can be
provided for bridging class loader name spaces. The data
processing system can include multiple, different class load-
ers disposed within a single run-time environment. The data
processing system further can include a class loader bridge
programmed to moderate access to the different class loaders
in response to a request to load an object from one of two
programming models containing objects concurrently in the
single run-time environment.

The class loader bridge can be programmed to proxy
objects across a class loader boundary between different ones
of'the class loaders disposed in the run-time environment. The
class loader bridge also can be defined using recursion by one
of'passing an object having a base type across the class loader
bridge unaltered and by serializing the object across the class
loader bridge. Finally, an invocation handler can be coupled
to the class loader bridge and programmed to invoke the class
loader to bridge arguments to a method in an object proxied
by the class loader bridge.

In another embodiment, a method for bridging class loader
name spaces can include receiving a request to load an object
in a run-time environment. A type for the object can be iden-
tified. Subsequently, a class loader can be selected from
among a multiplicity of class loaders based upon the identi-
fied type in the run-time environment to process the request.
The selecting step can include recursively passing the object
unaltered across a class loader boundary where the identified
type is a type loaded by a shared parent class loader. The
selecting step also can include serializing the object across a
class boundary, and de-serializing the object in a selected
class loader.

The selecting step yet further can include determining if
the object is proxiable across a class loading boundary
between the class loaders. In this regard, the determining step
can include determining if the object implements a common
interface that can be resolved within each of the class loaders.
If it is determined that the object is proxiable across the class
loading boundary, access to the object can be proxied from
one namespace for one of the class loaders to another
namespace for another of the class loaders.

Additional aspects of the invention will be set forth in part
in the description which follows, and in part will be obvious
from the description, or may be learned by practice of the

US 8,141,070 B2

3

invention. The aspects of the invention will be realized and
attained by means of the elements and combinations particu-
larly pointed out in the appended claims. It is to be understood
that both the foregoing general description and the following
detailed description are exemplary and explanatory only and
are not restrictive of the invention, as claimed.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute part of this specification, illustrate embodi-
ments of the invention and together with the description,
serve to explain the principles of the invention. The embodi-
ments illustrated herein are presently preferred, it being
understood, however, that the invention is not limited to the
precise arrangements and instrumentalities shown, wherein:

FIG. 1 is a schematic illustration of a virtual machine
configured to bridge class loader name spaces;

FIG. 2 is a schematic illustration of a virtual machine
configured to bridge class loader name spaces;

FIG. 3 is a schematic illustration of a virtual machine
configured to bridge class loader name spaces; and,

FIG. 4 is a flow chart illustrating a process for bridging
class loader name spaces.

DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the present invention provide a method,
system and computer program product for bridging class
loader name spaces in a virtual machine. In accordance with
an embodiment of the present invention, multiple different
class loaders for different programming models can be dis-
posed concurrently in a single virtual machine. A class loader
bridge can moderate access to the class loaders for loading
component objects for each of at least two of the different
programming models in the virtual machine. In this regard,
upon invocation the class loader bridge can be programmed to
select among the class loaders for creating an instance of an
application object.

The class loader bridge can be disposed within or in asso-
ciation with a virtual machine. The virtual machine can be a
JVM and can include two or more programming models
supporting the operation of a set of objects for an application.
The programming models can include, for example, J2EE
container and an Eclipse tools platform. In particular, the
class loader bridge can include a generic library which can
dynamically bridge isolated class loader name spaces in the
virtual machine. As such, the class loader bridge can enable
the embedding of the different class loading models within
the same virtual machine, without altering the class loading
models.

The class loader bridge can be programmed to handle
several scenarios for bridging class loaders across different
class loader name spaces in a single virtual machine. Specifi-
cally, to the extent that an object is to be loaded across a class
loader boundary, if the object is an instance of a type sup-
ported by a shared, parent class loader, the object within the
first class loader name space can directly reference the
instance of the object in a different class loader name space in
the virtual machine.

In more particular illustration, FIG. 1 is a schematic illus-
tration of a virtual machine 170 configured with a class loader
bridge 400 to bridge class loader name spaces 110, 120 for
different programming models where an object 130 to be
accessed within one class loader name space 110 by an object
in another class loader name space 120 is an instance of type

5

20

25

30

35

40

45

55

60

65

4

160 supported by a shared, parent class loader 150. The case
where the object 130 is of a type 160 loaded by a shared parent
class loader 150 is the common case for all primitive types
that are loaded by the system class loader. Consequently, in
this circumstance, bridging will not be necessary.

FIG. 2, by comparison, is a schematic illustration of a
virtual machine 270 configured with a class loader bridge 400
to bridge class loader name spaces 210, 220 where the object
230 to be accessed is proxiable across the class loader bound-
ary. Specifically, an object is “proxiable across the class load-
ing boundary”, if it implements a common interface or set of
interfaces that are resolvable within each class loader. This
determination can be made at runtime using reflection to
dynamically inspect the object, to identify the interfaces of
the source object and to query the destination class loader
using standard class loading mechanisms. Moreover, this
determination can be optimized by explicitly declaring or
passing in meta-data that declares types to be proxiable, albeit
to do so requires that all the proxiable types be known stati-
cally.

In any event, as shown in FIG. 2, an object 280 in a first
class loading name space 220 attempting to access the object
230 in a different class loading name space 210 can utilize a
direct reference to a proxy 240 for the object 230. The proxy
240 can be an instance of the same type 260 as the object 230.
Yet, the proxy 240 can pass communicative interactions with
the object 230 on behalf of the object 280 through an invoca-
tion handler 290 which can be an instance of the class loading
bridge 400. The accessing of members of the object 230 on
behalf of the object 280 can occur through the proxy in the
same way that remote method invocation operates as it is well
known in the art.

Finally, FIG. 3 is a schematic illustration of a virtual
machine 370 configured with a class loader bridge 400 to
bridge class loader name spaces 310, 320 where recursive
loading of other objects 340A is required. In general, the
usage pattern for the class loader bridge 400 in this circum-
stance is that an object 330A is explicitly passed across the
class loading boundary via an invocation handler 390A
instance of the class loading bridge 400 to form a point of
communication. This object 330A can be proxiable, and the
resulting proxy 330B which can be an instance of the same
type 360 as the object 330A can be used by the consumer or
client.

Method 300 invocations by the client pass through the
proxy 330B via an invocation handler 390 A that invokes the
class loader bridge 400 to bridge any arguments to the method
300. The method is then performed on the target object 330A
within the destination class loader name space 310, and the
result can be returned to the invocation handler 390 A, which
in turn can use the class loader bridge 400 to bridge the
resulting object or objects. To the extent that the returned
result of the invoked method 300 is a reference to another
object 340A which must be proxied across the class loader
boundary, a proxy 340B can be created for the returned object
340A so that both the proxy 340B and the returned object
340A are both instances of the same type 380. As before, an
invocation handler 390B can manage interactions across the
class loader boundary.

In illustration of the operation of the class loader bridge
400, FIG. 4 is a flow chart illustrating a process for bridging
class loader name spaces. In block 410, an object can be
retrieved for processing and loading. In block 420, the object
type can be identified. Subsequently, the retrieved object can
be processed for class loading by the class loading bridge. In
this regard, the class loader bridge can be implemented recur-
sively according to three different selectable sub-methodolo-

US 8,141,070 B2

5

gies which when executed can bridge objects between the
different class loaders in the virtual machine.

First, in decision block 430, it can be determined if the
object is of a type loaded by a shared parent class loader. The
case where the object is of a type loaded by a shared parent
class loader is the common case for all primitive types that are
loaded by the system class loader. Consequently, in this cir-
cumstance, bridging will not be necessary. Thus, if the object
is of atype loaded by a shared parent class loader, in block 440
the object can be passed across the class loader boundary
unaltered. Otherwise, the process can continue in decision
block 450.

In decision block 450, it can be determined if the object is
proxiable across the class loading boundary. Proxying of the
object across the bridge is desired when interacting with
services or components in any form of bi-directional commu-
nication, and in general Java objects built according to stan-
dard object oriented and design pattern practices which are
sufficiently abstracted to be proxied across the class loading
boundary Accordingly, in decision block 450 if it is deter-
mined that the object is proxiable across the class loading
boundary, in block 460, the object can be proxied with the
class loading bridge to recursively bridge the resulting
objects. Otherwise, the process can continue through decision
block 470.

In decision block 470, it can be determined if the object is
serializable. If the object is serializable, in block 480 the
object can be serialized to a byte stream and de-serialized
within the destination class loader. This serialization of the
object is directly equivalent to the manner in which Java
Remote Method Invocation (RMI) library communicates
between two Java virtual machines, without the high over-
head costs of sockets and cross process communication.

In the serialization process, the content of an object can be
written to a byte level representation and then re-read by the
destination class loader. This serialization performance can
be made equivalent to simply a cloning of the original object
within the destination class loader, depending on the com-
plexity of the object or virtual machine defined serialization
routines. In any event, in block 490 the process can end.

In sum, the class loader bridge can recursively bridge argu-
ments passed across the class loading boundary, and can
return the types of each method call. Objects can be proxied
across the class loading boundary which objects can be
wrapped with an invocation handler that invokes the class
loader bridge as part of any method invocations. Thus the
class loading bridge can be defined using recursion with two
potential base cases: passing a base type across the bridge
unaltered or serializing the object across the bridge. The
recursive case uses dynamic proxies to proxy the objects
transported in both directions until the objects have all
reached an object that conforms to the base case.

Additionally, the class loader bridge can dynamically
handle an arbitrary set of types at runtime. In this regard, the
library of the class loader bridge can derive the class relation-
ships and the resulting rules for bridging an object from
source and destination class loaders at runtime. Notably, the
foregoing bridging methodology can be applied to any pro-
gramming language that dynamically loads and resolves
object types at runtime. The class loader bridge thus enables
the re-use of large existing code bases without modification,
while underlying performance enhancements can be made by
collocating originally distributed services within the same
virtual machine, thus eliminating the need for inter-process
communications.

Embodiments of the invention can take the form of an
entirely hardware embodiment, an entirely software embodi-

20

25

30

35

40

45

50

55

60

65

6

ment or an embodiment containing both hardware and soft-
ware elements. In a preferred embodiment, the invention is
implemented in software, which includes but is not limited to
firmware, resident software, microcode, and the like. Further-
more, the invention can take the form of a computer program
product accessible from a computer-usable or computer-
readable medium providing program code for use by or in
connection with a computer or any instruction execution sys-
tem.

For the purposes of this description, a computer-usable or
computer readable medium can be any apparatus that can
contain, store, communicate, propagate, or transport the pro-
gram for use by or in connection with the instruction execu-
tion system, apparatus, or device. The medium can be an
electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system (or apparatus or device). Examples of
a computer-readable medium include a semiconductor or
solid state memory, magnetic tape, a removable computer
diskette, a random access memory (RAM), a read-only
memory (ROM), a rigid magnetic disk and an optical disk.
Current examples of optical disks include compact disk-read
only memory (CD-ROM), compact disk-read/write (CD-R/
W) and DVD.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution. Input/output or I/O devices (including but
not limited to keyboards, displays, pointing devices, etc.) can
be coupled to the system either directly or through interven-
ing I/O controllers. Network adapters may also be coupled to
the system to enable the data processing system to become
coupled to other data processing systems or remote printers or
storage devices through intervening private or public net-
works. Modems, cable modem and Ethernet cards are just a
few of the currently available types of network adapters.

We claim:

1. A data processing system for bridging class loader name
spaces comprising:

a plurality of different class loaders disposed within a

single run-time environment; and,

a class loader bridge executing in memory by a processor
of the data processing system and programmed to mod-
erate access to said different class loaders in response to
arequest to load an object from one of two programming
models containing objects concurrently in said single
run-time environment.

2. The data processing system of claim 1, wherein said

run-time environment is a Java virtual machine (JVM).

3. The data processing system of claim 1, wherein said
programming models comprise a Java 2 Enterprise Edition
(J2EE) container and an Eclipse tools platform.

4. The data processing system of claim 1, wherein said
class loader bridge is programmed to proxy objects across a
class loader boundary between different ones of said class
loaders disposed in said run-time environment.

5. The data processing system of claim 1, wherein said
class loader bridge is defined using recursion by one of pass-
ing an object having a base type across said class loader
bridge unaltered and by serializing said object across said
class loader bridge.

6. The data processing system of claim 4, further compris-
ing an invocation handler coupled to said class loader bridge

US 8,141,070 B2

7

and programmed to invoke said class loader to bridge argu-
ments to a method in an object proxied by the class loader
bridge.

7. In a run-time environment, a method for bridging class
loader name spaces comprising the steps of:

receiving a request to load an object in the run-time envi-

ronment;

identifying a type for said object; and,

selecting a class loader from among a plurality of class

loaders based upon said identified type in the run-time
environment to process said request.

8. The method of claim 7, wherein said selecting step
comprises the step of recursively passing said object unal-
tered across a class loader boundary where said identified
type is a type loaded by a shared parent class loader.

9. The method of claim 7, wherein said selecting step
comprises the steps of:

serializing said object across a class boundary; and,

de-serializing said object in a selected class loader.

10. The method of claim 7, wherein said selecting step
comprises the steps of:

determining if said object is proxiable across a class load-

ing boundary between said class loaders; and,

if it is determined that said object is proxiable, proxying

access to said object from one namespace for one of said
class loaders to another namespace for another of said
class loaders.

11. The method of claim 10, wherein said determining step
comprises the step of determining if said object implements a
common interface that can be resolved within each of said
class loaders.

12. A computer program product comprising a computer
usable medium including computer usable program code for
bridging class loader namespaces, said computer program
product including:

computer usable program code for receiving a request to

load an object in the run-time environment;

5

20

25

30

35

8

computer usable program code for identifying a type for

said object; and,

computer usable program code for selecting a class loader

from among a plurality of class loaders based upon said
identified type in the run-time environment to process
said request.

13. The computer program product of claim 12, wherein
said computer usable program code for selecting a class
loader comprises computer usable program code for recur-
sively passing said object unaltered across a class loader
boundary where said identified type is a type loaded by a
shared parent class loader.

14. The computer program product of claim 12, wherein
said computer usable program code for selecting a class
loader comprises:

computer usable program code for serializing said object

across a class boundary; and,

computer usable program code for de-serializing said

object in a selected class loader.

15. The computer program product of claim 12, wherein
said computer usable program code for selecting a class
loader comprises:

computer usable program code for determining if said

object is proxiable across a class loading boundary
between said class loaders; and,

computer usable program code for proxying access to said

object from one namespace for one of said class loaders
to another namespace for another of said class loaders if
it is determined that said object is proxiable.

16. The method of claim 15, wherein said computer usable
program code for determining if said object is proxiable com-
prises computer usable program code for determining if said
object implements a common interface that can be resolved
within each of said class loaders.

